MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem3 Structured version   Visualization version   GIF version

Theorem axdc3lem3 9274
Description: Simple substitution lemma for axdc3 9276. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem3.1 𝐴 ∈ V
axdc3lem3.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem3.3 𝐵 ∈ V
Assertion
Ref Expression
axdc3lem3 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐴,𝑠,𝑛   𝐵,𝑘,𝑚,𝑛   𝐵,𝑠,𝑘   𝐶,𝑚,𝑛   𝐶,𝑠   𝑚,𝐹,𝑛   𝐹,𝑠
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑆(𝑘,𝑚,𝑛,𝑠)   𝐹(𝑘)

Proof of Theorem axdc3lem3
StepHypRef Expression
1 axdc3lem3.2 . . 3 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
21eleq2i 2693 . 2 (𝐵𝑆𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
3 axdc3lem3.3 . . 3 𝐵 ∈ V
4 feq1 6026 . . . . 5 (𝑠 = 𝐵 → (𝑠:suc 𝑛𝐴𝐵:suc 𝑛𝐴))
5 fveq1 6190 . . . . . 6 (𝑠 = 𝐵 → (𝑠‘∅) = (𝐵‘∅))
65eqeq1d 2624 . . . . 5 (𝑠 = 𝐵 → ((𝑠‘∅) = 𝐶 ↔ (𝐵‘∅) = 𝐶))
7 fveq1 6190 . . . . . . 7 (𝑠 = 𝐵 → (𝑠‘suc 𝑘) = (𝐵‘suc 𝑘))
8 fveq1 6190 . . . . . . . 8 (𝑠 = 𝐵 → (𝑠𝑘) = (𝐵𝑘))
98fveq2d 6195 . . . . . . 7 (𝑠 = 𝐵 → (𝐹‘(𝑠𝑘)) = (𝐹‘(𝐵𝑘)))
107, 9eleq12d 2695 . . . . . 6 (𝑠 = 𝐵 → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1110ralbidv 2986 . . . . 5 (𝑠 = 𝐵 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
124, 6, 113anbi123d 1399 . . . 4 (𝑠 = 𝐵 → ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1312rexbidv 3052 . . 3 (𝑠 = 𝐵 → (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
143, 13elab 3350 . 2 (𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
15 suceq 5790 . . . . 5 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
1615feq2d 6031 . . . 4 (𝑛 = 𝑚 → (𝐵:suc 𝑛𝐴𝐵:suc 𝑚𝐴))
17 raleq 3138 . . . 4 (𝑛 = 𝑚 → (∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)) ↔ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1816, 173anbi13d 1401 . . 3 (𝑛 = 𝑚 → ((𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1918cbvrexv 3172 . 2 (∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
202, 14, 193bitri 286 1 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  c0 3915  suc csuc 5725  wf 5884  cfv 5888  ωcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  axdc3lem4  9275
  Copyright terms: Public domain W3C validator