| Step | Hyp | Ref
| Expression |
| 1 | | zfpow 4844 |
. . . 4
⊢
∃𝑤∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) |
| 2 | | 19.8a 2052 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑦 → ∃𝑧 𝑤 ∈ 𝑦) |
| 3 | | sp 2053 |
. . . . . . . 8
⊢
(∀𝑦 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑧) |
| 4 | 2, 3 | imim12i 62 |
. . . . . . 7
⊢
((∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧)) |
| 5 | 4 | alimi 1739 |
. . . . . 6
⊢
(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → ∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧)) |
| 6 | 5 | imim1i 63 |
. . . . 5
⊢
((∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) → (∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤)) |
| 7 | 6 | alimi 1739 |
. . . 4
⊢
(∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) → ∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤)) |
| 8 | 1, 7 | eximii 1764 |
. . 3
⊢
∃𝑤∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) |
| 9 | | nfnae 2318 |
. . . . 5
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
| 10 | | nfnae 2318 |
. . . . 5
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 |
| 11 | 9, 10 | nfan 1828 |
. . . 4
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 12 | | nfnae 2318 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
| 13 | | nfnae 2318 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑧 |
| 14 | 12, 13 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 15 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑤(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 16 | | nfnae 2318 |
. . . . . . . . . 10
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 |
| 17 | | nfcvd 2765 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑤) |
| 18 | | nfcvf 2788 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| 19 | 17, 18 | nfeld 2773 |
. . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 20 | 16, 19 | nfexd 2167 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∃𝑧 𝑤 ∈ 𝑦) |
| 21 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∃𝑧 𝑤 ∈ 𝑦) |
| 22 | | nfcvd 2765 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑤) |
| 23 | | nfcvf 2788 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑧) |
| 24 | 22, 23 | nfeld 2773 |
. . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑤 ∈ 𝑧) |
| 25 | 13, 24 | nfald 2165 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥∀𝑦 𝑤 ∈ 𝑧) |
| 26 | 25 | adantl 482 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑦 𝑤 ∈ 𝑧) |
| 27 | 21, 26 | nfimd 1823 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧)) |
| 28 | 15, 27 | nfald 2165 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧)) |
| 29 | 18, 17 | nfeld 2773 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝑤) |
| 30 | 29 | adantr 481 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 ∈ 𝑤) |
| 31 | 28, 30 | nfimd 1823 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤)) |
| 32 | 14, 31 | nfald 2165 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤)) |
| 33 | | nfeqf2 2297 |
. . . . . . . . 9
⊢ (¬
∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑤 = 𝑥) |
| 34 | 33 | naecoms 2313 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤 = 𝑥) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦 𝑤 = 𝑥) |
| 36 | 14, 35 | nfan1 2068 |
. . . . . 6
⊢
Ⅎ𝑦((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) |
| 37 | | nfnae 2318 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 |
| 38 | | nfeqf2 2297 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑤 = 𝑥) |
| 39 | 38 | naecoms 2313 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧 𝑤 = 𝑥) |
| 40 | 37, 39 | nfan1 2068 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥) |
| 41 | | elequ1 1997 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥) → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 43 | 40, 42 | exbid 2091 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥) → (∃𝑧 𝑤 ∈ 𝑦 ↔ ∃𝑧 𝑥 ∈ 𝑦)) |
| 44 | 43 | adantll 750 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑧 𝑤 ∈ 𝑦 ↔ ∃𝑧 𝑥 ∈ 𝑦)) |
| 45 | 12, 34 | nfan1 2068 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥) |
| 46 | | elequ1 1997 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) |
| 47 | 46 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥) → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) |
| 48 | 45, 47 | albid 2090 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥) → (∀𝑦 𝑤 ∈ 𝑧 ↔ ∀𝑦 𝑥 ∈ 𝑧)) |
| 49 | 48 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑦 𝑤 ∈ 𝑧 ↔ ∀𝑦 𝑥 ∈ 𝑧)) |
| 50 | 44, 49 | imbi12d 334 |
. . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) ↔ (∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧))) |
| 51 | 50 | ex 450 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) ↔ (∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧)))) |
| 52 | 11, 27, 51 | cbvald 2277 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) ↔ ∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧))) |
| 53 | 52 | adantr 481 |
. . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) ↔ ∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧))) |
| 54 | | elequ2 2004 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) |
| 55 | 54 | adantl 482 |
. . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) |
| 56 | 53, 55 | imbi12d 334 |
. . . . . 6
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) ↔ (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 57 | 36, 56 | albid 2090 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) ↔ ∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 58 | 57 | ex 450 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → (∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) ↔ ∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)))) |
| 59 | 11, 32, 58 | cbvexd 2278 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤∀𝑦(∀𝑤(∃𝑧 𝑤 ∈ 𝑦 → ∀𝑦 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑤) ↔ ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 60 | 8, 59 | mpbii 223 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 61 | 60 | ex 450 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |