![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 impt 169 jarl 175 pm2.67-2 417 pm3.41 582 pm3.42 583 jaob 822 3jaob 1390 merco1 1638 19.21v 1868 19.39 1899 r19.37 3086 axrep2 4773 dmcosseq 5387 fliftfun 6562 tz7.48lem 7536 ac6sfi 8204 frfi 8205 domunfican 8233 iunfi 8254 finsschain 8273 cantnfval2 8566 cantnflt 8569 cnfcom 8597 kmlem1 8972 kmlem13 8984 axpowndlem2 9420 wunfi 9543 ingru 9637 xrub 12142 hashf1lem2 13240 caubnd 14098 fsum2d 14502 fsumabs 14533 fsumrlim 14543 fsumo1 14544 fsumiun 14553 fprod2d 14711 ablfac1eulem 18471 mplcoe1 19465 mplcoe5 19468 mdetunilem9 20426 t1t0 21152 fiuncmp 21207 ptcmpfi 21616 isfil2 21660 fsumcn 22673 ovolfiniun 23269 finiunmbl 23312 volfiniun 23315 itgfsum 23593 dvmptfsum 23738 pntrsumbnd 25255 nmounbseqi 27632 nmounbseqiALT 27633 isch3 28098 dmdmd 29159 mdslmd1lem2 29185 sumdmdi 29279 dmdbr4ati 29280 dmdbr6ati 29282 gsumle 29779 gsumvsca1 29782 gsumvsca2 29783 pwsiga 30193 bnj1533 30922 bnj110 30928 bnj1523 31139 dfon2lem8 31695 meran1 32410 bj-bi3ant 32574 bj-ssbid2ALT 32646 bj-spnfw 32658 bj-spst 32679 bj-19.23bit 32681 bj-axrep2 32789 wl-syls2 33292 heibor1lem 33608 isltrn2N 35406 cdlemefrs32fva 35688 fiinfi 37878 con3ALT2 38736 alrim3con13v 38743 islinindfis 42238 setrec1lem4 42437 |
Copyright terms: Public domain | W3C validator |