![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version |
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
basprssdmsets.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
basprssdmsets.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
basprssdmsets.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
basprssdmsets.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
basprssdmsets | ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basprssdmsets.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) | |
2 | 1 | orcd 407 | . . . 4 ⊢ (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) |
3 | elun 3753 | . . . 4 ⊢ ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) | |
4 | 2, 3 | sylibr 224 | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼})) |
5 | basprssdmsets.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
6 | snidg 4206 | . . . . . 6 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ {𝐼}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
8 | 7 | olcd 408 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) |
9 | elun 3753 | . . . 4 ⊢ (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) | |
10 | 8, 9 | sylibr 224 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (dom 𝑆 ∪ {𝐼})) |
11 | 4, 10 | prssd 4354 | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼})) |
12 | basprssdmsets.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
13 | structex 15868 | . . . 4 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
15 | basprssdmsets.w | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
16 | setsdm 15892 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐸 ∈ 𝑊) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) | |
17 | 14, 15, 16 | syl2anc 693 | . 2 ⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) |
18 | 11, 17 | sseqtr4d 3642 | 1 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 {csn 4177 {cpr 4179 〈cop 4183 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 Struct cstr 15853 ndxcnx 15854 sSet csts 15855 Basecbs 15857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-struct 15859 df-sets 15864 |
This theorem is referenced by: setsvtx 25927 setsiedg 25928 |
Copyright terms: Public domain | W3C validator |