MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basprssdmsets Structured version   Visualization version   Unicode version

Theorem basprssdmsets 15925
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s  |-  ( ph  ->  S Struct  X )
basprssdmsets.i  |-  ( ph  ->  I  e.  U )
basprssdmsets.w  |-  ( ph  ->  E  e.  W )
basprssdmsets.b  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
Assertion
Ref Expression
basprssdmsets  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)

Proof of Theorem basprssdmsets
StepHypRef Expression
1 basprssdmsets.b . . . . 5  |-  ( ph  ->  ( Base `  ndx )  e.  dom  S )
21orcd 407 . . . 4  |-  ( ph  ->  ( ( Base `  ndx )  e.  dom  S  \/  ( Base `  ndx )  e. 
{ I } ) )
3 elun 3753 . . . 4  |-  ( (
Base `  ndx )  e.  ( dom  S  u.  { I } )  <->  ( ( Base `  ndx )  e. 
dom  S  \/  ( Base `  ndx )  e. 
{ I } ) )
42, 3sylibr 224 . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  ( dom  S  u.  { I }
) )
5 basprssdmsets.i . . . . . 6  |-  ( ph  ->  I  e.  U )
6 snidg 4206 . . . . . 6  |-  ( I  e.  U  ->  I  e.  { I } )
75, 6syl 17 . . . . 5  |-  ( ph  ->  I  e.  { I } )
87olcd 408 . . . 4  |-  ( ph  ->  ( I  e.  dom  S  \/  I  e.  {
I } ) )
9 elun 3753 . . . 4  |-  ( I  e.  ( dom  S  u.  { I } )  <-> 
( I  e.  dom  S  \/  I  e.  {
I } ) )
108, 9sylibr 224 . . 3  |-  ( ph  ->  I  e.  ( dom 
S  u.  { I } ) )
114, 10prssd 4354 . 2  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_  ( dom  S  u.  { I } ) )
12 basprssdmsets.s . . . 4  |-  ( ph  ->  S Struct  X )
13 structex 15868 . . . 4  |-  ( S Struct  X  ->  S  e.  _V )
1412, 13syl 17 . . 3  |-  ( ph  ->  S  e.  _V )
15 basprssdmsets.w . . 3  |-  ( ph  ->  E  e.  W )
16 setsdm 15892 . . 3  |-  ( ( S  e.  _V  /\  E  e.  W )  ->  dom  ( S sSet  <. I ,  E >. )  =  ( dom  S  u.  { I } ) )
1714, 15, 16syl2anc 693 . 2  |-  ( ph  ->  dom  ( S sSet  <. I ,  E >. )  =  ( dom  S  u.  { I } ) )
1811, 17sseqtr4d 3642 1  |-  ( ph  ->  { ( Base `  ndx ) ,  I }  C_ 
dom  ( S sSet  <. I ,  E >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Struct cstr 15853   ndxcnx 15854   sSet csts 15855   Basecbs 15857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-struct 15859  df-sets 15864
This theorem is referenced by:  setsvtx  25927  setsiedg  25928
  Copyright terms: Public domain W3C validator