| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1296 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1296.1 |
|
| bnj1296.2 |
|
| bnj1296.3 |
|
| bnj1296.4 |
|
| bnj1296.5 |
|
| bnj1296.6 |
|
| bnj1296.7 |
|
| bnj1296.18 |
|
| bnj1296.9 |
|
| bnj1296.10 |
|
| bnj1296.11 |
|
| bnj1296.12 |
|
| Ref | Expression |
|---|---|
| bnj1296 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1296.18 |
. . . . 5
| |
| 2 | 1 | opeq2d 4409 |
. . . 4
|
| 3 | bnj1296.9 |
. . . 4
| |
| 4 | bnj1296.11 |
. . . 4
| |
| 5 | 2, 3, 4 | 3eqtr4g 2681 |
. . 3
|
| 6 | 5 | fveq2d 6195 |
. 2
|
| 7 | bnj1296.7 |
. . . 4
| |
| 8 | bnj1296.6 |
. . . . 5
| |
| 9 | bnj1296.10 |
. . . . . . . . . . 11
| |
| 10 | 9 | bnj1436 30910 |
. . . . . . . . . 10
|
| 11 | fndm 5990 |
. . . . . . . . . . 11
| |
| 12 | 11 | anim1i 592 |
. . . . . . . . . 10
|
| 13 | 10, 12 | bnj31 30785 |
. . . . . . . . 9
|
| 14 | raleq 3138 |
. . . . . . . . . . 11
| |
| 15 | 14 | pm5.32i 669 |
. . . . . . . . . 10
|
| 16 | 15 | rexbii 3041 |
. . . . . . . . 9
|
| 17 | 13, 16 | sylibr 224 |
. . . . . . . 8
|
| 18 | simpr 477 |
. . . . . . . 8
| |
| 19 | 17, 18 | bnj31 30785 |
. . . . . . 7
|
| 20 | 19 | bnj1265 30883 |
. . . . . 6
|
| 21 | bnj1296.2 |
. . . . . . 7
| |
| 22 | bnj1296.3 |
. . . . . . 7
| |
| 23 | 21, 22, 3, 9 | bnj1234 31081 |
. . . . . 6
|
| 24 | 20, 23 | eleq2s 2719 |
. . . . 5
|
| 25 | 8, 24 | bnj770 30833 |
. . . 4
|
| 26 | 7, 25 | bnj835 30829 |
. . 3
|
| 27 | bnj1296.4 |
. . . . 5
| |
| 28 | 27 | bnj1292 30886 |
. . . 4
|
| 29 | bnj1296.5 |
. . . . 5
| |
| 30 | 29, 7 | bnj1212 30870 |
. . . 4
|
| 31 | 28, 30 | bnj1213 30869 |
. . 3
|
| 32 | 26, 31 | bnj1294 30888 |
. 2
|
| 33 | bnj1296.12 |
. . . . . . . . . . 11
| |
| 34 | 33 | bnj1436 30910 |
. . . . . . . . . 10
|
| 35 | fndm 5990 |
. . . . . . . . . . 11
| |
| 36 | 35 | anim1i 592 |
. . . . . . . . . 10
|
| 37 | 34, 36 | bnj31 30785 |
. . . . . . . . 9
|
| 38 | raleq 3138 |
. . . . . . . . . . 11
| |
| 39 | 38 | pm5.32i 669 |
. . . . . . . . . 10
|
| 40 | 39 | rexbii 3041 |
. . . . . . . . 9
|
| 41 | 37, 40 | sylibr 224 |
. . . . . . . 8
|
| 42 | simpr 477 |
. . . . . . . 8
| |
| 43 | 41, 42 | bnj31 30785 |
. . . . . . 7
|
| 44 | 43 | bnj1265 30883 |
. . . . . 6
|
| 45 | 21, 22, 4, 33 | bnj1234 31081 |
. . . . . 6
|
| 46 | 44, 45 | eleq2s 2719 |
. . . . 5
|
| 47 | 8, 46 | bnj771 30834 |
. . . 4
|
| 48 | 7, 47 | bnj835 30829 |
. . 3
|
| 49 | 27 | bnj1293 30887 |
. . . 4
|
| 50 | 49, 30 | bnj1213 30869 |
. . 3
|
| 51 | 48, 50 | bnj1294 30888 |
. 2
|
| 52 | 6, 32, 51 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-bnj17 30753 |
| This theorem is referenced by: bnj1311 31092 |
| Copyright terms: Public domain | W3C validator |