![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj900 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj900.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj900.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj900 | ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj900.4 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 30910 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
3 | simp1 1061 | . . . . . 6 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → 𝑓 Fn 𝑛) | |
4 | 3 | reximi 3011 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛) |
5 | fndm 5990 | . . . . . 6 ⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) | |
6 | 5 | reximi 3011 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
7 | 2, 4, 6 | 3syl 18 | . . . 4 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
8 | 7 | bnj1196 30865 | . . 3 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
9 | nfre1 3005 | . . . . . . 7 ⊢ Ⅎ𝑛∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) | |
10 | 9 | nfab 2769 | . . . . . 6 ⊢ Ⅎ𝑛{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
11 | 1, 10 | nfcxfr 2762 | . . . . 5 ⊢ Ⅎ𝑛𝐵 |
12 | 11 | nfcri 2758 | . . . 4 ⊢ Ⅎ𝑛 𝑓 ∈ 𝐵 |
13 | 12 | 19.37 2100 | . . 3 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛))) |
14 | 8, 13 | mpbir 221 | . 2 ⊢ ∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
15 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑛∅ ∈ dom 𝑓 | |
16 | 12, 15 | nfim 1825 | . . 3 ⊢ Ⅎ𝑛(𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
17 | bnj900.3 | . . . . . 6 ⊢ 𝐷 = (ω ∖ {∅}) | |
18 | 17 | bnj529 30811 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 → ∅ ∈ 𝑛) |
19 | eleq2 2690 | . . . . . 6 ⊢ (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛)) | |
20 | 19 | biimparc 504 | . . . . 5 ⊢ ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
21 | 18, 20 | sylan 488 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
22 | 21 | imim2i 16 | . . 3 ⊢ ((𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
23 | 16, 22 | exlimi 2086 | . 2 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
24 | 14, 23 | ax-mp 5 | 1 ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∃wrex 2913 ∖ cdif 3571 ∅c0 3915 {csn 4177 dom cdm 5114 Fn wfn 5883 ωcom 7065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-fn 5891 df-om 7066 |
This theorem is referenced by: bnj906 31000 |
Copyright terms: Public domain | W3C validator |