Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Visualization version   Unicode version

Theorem bnj900 30999
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3  |-  D  =  ( om  \  { (/)
} )
bnj900.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj900  |-  ( f  e.  B  ->  (/)  e.  dom  f )
Distinct variable group:    f, n
Allowed substitution hints:    ph( f, n)    ps( f, n)    B( f, n)    D( f, n)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
21bnj1436 30910 . . . . 5  |-  ( f  e.  B  ->  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) )
3 simp1 1061 . . . . . 6  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  ->  f  Fn  n )
43reximi 3011 . . . . 5  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  ->  E. n  e.  D  f  Fn  n )
5 fndm 5990 . . . . . 6  |-  ( f  Fn  n  ->  dom  f  =  n )
65reximi 3011 . . . . 5  |-  ( E. n  e.  D  f  Fn  n  ->  E. n  e.  D  dom  f  =  n )
72, 4, 63syl 18 . . . 4  |-  ( f  e.  B  ->  E. n  e.  D  dom  f  =  n )
87bnj1196 30865 . . 3  |-  ( f  e.  B  ->  E. n
( n  e.  D  /\  dom  f  =  n ) )
9 nfre1 3005 . . . . . . 7  |-  F/ n E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps )
109nfab 2769 . . . . . 6  |-  F/_ n { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
111, 10nfcxfr 2762 . . . . 5  |-  F/_ n B
1211nfcri 2758 . . . 4  |-  F/ n  f  e.  B
131219.37 2100 . . 3  |-  ( E. n ( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )  <->  ( f  e.  B  ->  E. n
( n  e.  D  /\  dom  f  =  n ) ) )
148, 13mpbir 221 . 2  |-  E. n
( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )
15 nfv 1843 . . . 4  |-  F/ n (/) 
e.  dom  f
1612, 15nfim 1825 . . 3  |-  F/ n
( f  e.  B  -> 
(/)  e.  dom  f )
17 bnj900.3 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
1817bnj529 30811 . . . . 5  |-  ( n  e.  D  ->  (/)  e.  n
)
19 eleq2 2690 . . . . . 6  |-  ( dom  f  =  n  -> 
( (/)  e.  dom  f  <->  (/)  e.  n ) )
2019biimparc 504 . . . . 5  |-  ( (
(/)  e.  n  /\  dom  f  =  n
)  ->  (/)  e.  dom  f )
2118, 20sylan 488 . . . 4  |-  ( ( n  e.  D  /\  dom  f  =  n
)  ->  (/)  e.  dom  f )
2221imim2i 16 . . 3  |-  ( ( f  e.  B  -> 
( n  e.  D  /\  dom  f  =  n ) )  ->  (
f  e.  B  ->  (/) 
e.  dom  f )
)
2316, 22exlimi 2086 . 2  |-  ( E. n ( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )  -> 
( f  e.  B  -> 
(/)  e.  dom  f ) )
2414, 23ax-mp 5 1  |-  ( f  e.  B  ->  (/)  e.  dom  f )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913    \ cdif 3571   (/)c0 3915   {csn 4177   dom cdm 5114    Fn wfn 5883   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fn 5891  df-om 7066
This theorem is referenced by:  bnj906  31000
  Copyright terms: Public domain W3C validator