Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj970 Structured version   Visualization version   GIF version

Theorem bnj970 31017
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj970.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj970.10 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj970 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)

Proof of Theorem bnj970
StepHypRef Expression
1 bnj970.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
21bnj1232 30874 . . . 4 (𝜒𝑛𝐷)
323ad2ant1 1082 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛𝐷)
43adantl 482 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑛𝐷)
5 simpr3 1069 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
6 bnj970.10 . . . . 5 𝐷 = (ω ∖ {∅})
76bnj923 30838 . . . 4 (𝑛𝐷𝑛 ∈ ω)
8 peano2 7086 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
9 eleq1 2689 . . . . 5 (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω))
10 bianir 1009 . . . . 5 ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω)
118, 9, 10syl2an 494 . . . 4 ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω)
127, 11sylan 488 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ∈ ω)
13 df-suc 5729 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1413eqeq2i 2634 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
15 ssun2 3777 . . . . . . 7 {𝑛} ⊆ (𝑛 ∪ {𝑛})
16 vex 3203 . . . . . . . 8 𝑛 ∈ V
1716snnz 4309 . . . . . . 7 {𝑛} ≠ ∅
18 ssn0 3976 . . . . . . 7 (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅)
1915, 17, 18mp2an 708 . . . . . 6 (𝑛 ∪ {𝑛}) ≠ ∅
20 neeq1 2856 . . . . . 6 (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅))
2119, 20mpbiri 248 . . . . 5 (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅)
2214, 21sylbi 207 . . . 4 (𝑝 = suc 𝑛𝑝 ≠ ∅)
2322adantl 482 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ≠ ∅)
246eleq2i 2693 . . . 4 (𝑝𝐷𝑝 ∈ (ω ∖ {∅}))
25 eldifsn 4317 . . . 4 (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2624, 25bitri 264 . . 3 (𝑝𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2712, 23, 26sylanbrc 698 . 2 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝𝐷)
284, 5, 27syl2anc 693 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  suc csuc 5725   Fn wfn 5883  ωcom 7065  w-bnj17 30752   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj910  31018
  Copyright terms: Public domain W3C validator