![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj970 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj970.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj970.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj970 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj970.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | 1 | bnj1232 30874 | . . . 4 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
3 | 2 | 3ad2ant1 1082 | . . 3 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑛 ∈ 𝐷) |
4 | 3 | adantl 482 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑛 ∈ 𝐷) |
5 | simpr3 1069 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛) | |
6 | bnj970.10 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
7 | 6 | bnj923 30838 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
8 | peano2 7086 | . . . . 5 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
9 | eleq1 2689 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) | |
10 | bianir 1009 | . . . . 5 ⊢ ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω) | |
11 | 8, 9, 10 | syl2an 494 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
12 | 7, 11 | sylan 488 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
13 | df-suc 5729 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
14 | 13 | eqeq2i 2634 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
15 | ssun2 3777 | . . . . . . 7 ⊢ {𝑛} ⊆ (𝑛 ∪ {𝑛}) | |
16 | vex 3203 | . . . . . . . 8 ⊢ 𝑛 ∈ V | |
17 | 16 | snnz 4309 | . . . . . . 7 ⊢ {𝑛} ≠ ∅ |
18 | ssn0 3976 | . . . . . . 7 ⊢ (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅) | |
19 | 15, 17, 18 | mp2an 708 | . . . . . 6 ⊢ (𝑛 ∪ {𝑛}) ≠ ∅ |
20 | neeq1 2856 | . . . . . 6 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅)) | |
21 | 19, 20 | mpbiri 248 | . . . . 5 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅) |
22 | 14, 21 | sylbi 207 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 ≠ ∅) |
23 | 22 | adantl 482 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ≠ ∅) |
24 | 6 | eleq2i 2693 | . . . 4 ⊢ (𝑝 ∈ 𝐷 ↔ 𝑝 ∈ (ω ∖ {∅})) |
25 | eldifsn 4317 | . . . 4 ⊢ (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) | |
26 | 24, 25 | bitri 264 | . . 3 ⊢ (𝑝 ∈ 𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) |
27 | 12, 23, 26 | sylanbrc 698 | . 2 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ 𝐷) |
28 | 4, 5, 27 | syl2anc 693 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 suc csuc 5725 Fn wfn 5883 ωcom 7065 ∧ w-bnj17 30752 FrSe w-bnj15 30758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 df-bnj17 30753 |
This theorem is referenced by: bnj910 31018 |
Copyright terms: Public domain | W3C validator |