Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj970 Structured version   Visualization version   Unicode version

Theorem bnj970 31017
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj970.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj970.10  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj970  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  e.  D )

Proof of Theorem bnj970
StepHypRef Expression
1 bnj970.3 . . . . 5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
21bnj1232 30874 . . . 4  |-  ( ch 
->  n  e.  D
)
323ad2ant1 1082 . . 3  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  n  e.  D )
43adantl 482 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  n  e.  D )
5 simpr3 1069 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  =  suc  n )
6 bnj970.10 . . . . 5  |-  D  =  ( om  \  { (/)
} )
76bnj923 30838 . . . 4  |-  ( n  e.  D  ->  n  e.  om )
8 peano2 7086 . . . . 5  |-  ( n  e.  om  ->  suc  n  e.  om )
9 eleq1 2689 . . . . 5  |-  ( p  =  suc  n  -> 
( p  e.  om  <->  suc  n  e.  om )
)
10 bianir 1009 . . . . 5  |-  ( ( suc  n  e.  om  /\  ( p  e.  om  <->  suc  n  e.  om )
)  ->  p  e.  om )
118, 9, 10syl2an 494 . . . 4  |-  ( ( n  e.  om  /\  p  =  suc  n )  ->  p  e.  om )
127, 11sylan 488 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n )  ->  p  e.  om )
13 df-suc 5729 . . . . . 6  |-  suc  n  =  ( n  u. 
{ n } )
1413eqeq2i 2634 . . . . 5  |-  ( p  =  suc  n  <->  p  =  ( n  u.  { n } ) )
15 ssun2 3777 . . . . . . 7  |-  { n }  C_  ( n  u. 
{ n } )
16 vex 3203 . . . . . . . 8  |-  n  e. 
_V
1716snnz 4309 . . . . . . 7  |-  { n }  =/=  (/)
18 ssn0 3976 . . . . . . 7  |-  ( ( { n }  C_  ( n  u.  { n } )  /\  {
n }  =/=  (/) )  -> 
( n  u.  {
n } )  =/=  (/) )
1915, 17, 18mp2an 708 . . . . . 6  |-  ( n  u.  { n }
)  =/=  (/)
20 neeq1 2856 . . . . . 6  |-  ( p  =  ( n  u. 
{ n } )  ->  ( p  =/=  (/) 
<->  ( n  u.  {
n } )  =/=  (/) ) )
2119, 20mpbiri 248 . . . . 5  |-  ( p  =  ( n  u. 
{ n } )  ->  p  =/=  (/) )
2214, 21sylbi 207 . . . 4  |-  ( p  =  suc  n  ->  p  =/=  (/) )
2322adantl 482 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n )  ->  p  =/=  (/) )
246eleq2i 2693 . . . 4  |-  ( p  e.  D  <->  p  e.  ( om  \  { (/) } ) )
25 eldifsn 4317 . . . 4  |-  ( p  e.  ( om  \  { (/)
} )  <->  ( p  e.  om  /\  p  =/=  (/) ) )
2624, 25bitri 264 . . 3  |-  ( p  e.  D  <->  ( p  e.  om  /\  p  =/=  (/) ) )
2712, 23, 26sylanbrc 698 . 2  |-  ( ( n  e.  D  /\  p  =  suc  n )  ->  p  e.  D
)
284, 5, 27syl2anc 693 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   suc csuc 5725    Fn wfn 5883   omcom 7065    /\ w-bnj17 30752    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj910  31018
  Copyright terms: Public domain W3C validator