| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj970 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj970.3 |
|
| bnj970.10 |
|
| Ref | Expression |
|---|---|
| bnj970 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj970.3 |
. . . . 5
| |
| 2 | 1 | bnj1232 30874 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1082 |
. . 3
|
| 4 | 3 | adantl 482 |
. 2
|
| 5 | simpr3 1069 |
. 2
| |
| 6 | bnj970.10 |
. . . . 5
| |
| 7 | 6 | bnj923 30838 |
. . . 4
|
| 8 | peano2 7086 |
. . . . 5
| |
| 9 | eleq1 2689 |
. . . . 5
| |
| 10 | bianir 1009 |
. . . . 5
| |
| 11 | 8, 9, 10 | syl2an 494 |
. . . 4
|
| 12 | 7, 11 | sylan 488 |
. . 3
|
| 13 | df-suc 5729 |
. . . . . 6
| |
| 14 | 13 | eqeq2i 2634 |
. . . . 5
|
| 15 | ssun2 3777 |
. . . . . . 7
| |
| 16 | vex 3203 |
. . . . . . . 8
| |
| 17 | 16 | snnz 4309 |
. . . . . . 7
|
| 18 | ssn0 3976 |
. . . . . . 7
| |
| 19 | 15, 17, 18 | mp2an 708 |
. . . . . 6
|
| 20 | neeq1 2856 |
. . . . . 6
| |
| 21 | 19, 20 | mpbiri 248 |
. . . . 5
|
| 22 | 14, 21 | sylbi 207 |
. . . 4
|
| 23 | 22 | adantl 482 |
. . 3
|
| 24 | 6 | eleq2i 2693 |
. . . 4
|
| 25 | eldifsn 4317 |
. . . 4
| |
| 26 | 24, 25 | bitri 264 |
. . 3
|
| 27 | 12, 23, 26 | sylanbrc 698 |
. 2
|
| 28 | 4, 5, 27 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj910 31018 |
| Copyright terms: Public domain | W3C validator |