| Step | Hyp | Ref
| Expression |
| 1 | | df-txp 31961 |
. . 3
⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
| 2 | 1 | breqi 4659 |
. 2
⊢ (𝑋(𝐴 ⊗ 𝐵)〈𝑌, 𝑍〉 ↔ 𝑋((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵))〈𝑌, 𝑍〉) |
| 3 | | brin 4704 |
. 2
⊢ (𝑋((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵))〈𝑌, 𝑍〉 ↔ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)〈𝑌, 𝑍〉 ∧ 𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)〈𝑌, 𝑍〉)) |
| 4 | | brtxp.1 |
. . . . 5
⊢ 𝑋 ∈ V |
| 5 | | opex 4932 |
. . . . 5
⊢
〈𝑌, 𝑍〉 ∈ V |
| 6 | 4, 5 | brco 5292 |
. . . 4
⊢ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)〈𝑌, 𝑍〉 ↔ ∃𝑦(𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉)) |
| 7 | | ancom 466 |
. . . . . 6
⊢ ((𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ (𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉 ∧ 𝑋𝐴𝑦)) |
| 8 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 9 | 8, 5 | brcnv 5305 |
. . . . . . . 8
⊢ (𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉(1st ↾ (V ×
V))𝑦) |
| 10 | | brtxp.2 |
. . . . . . . . . 10
⊢ 𝑌 ∈ V |
| 11 | | brtxp.3 |
. . . . . . . . . 10
⊢ 𝑍 ∈ V |
| 12 | 10, 11 | opelvv 5166 |
. . . . . . . . 9
⊢
〈𝑌, 𝑍〉 ∈ (V ×
V) |
| 13 | 8 | brres 5402 |
. . . . . . . . 9
⊢
(〈𝑌, 𝑍〉(1st ↾ (V
× V))𝑦 ↔
(〈𝑌, 𝑍〉1st 𝑦 ∧ 〈𝑌, 𝑍〉 ∈ (V ×
V))) |
| 14 | 12, 13 | mpbiran2 954 |
. . . . . . . 8
⊢
(〈𝑌, 𝑍〉(1st ↾ (V
× V))𝑦 ↔
〈𝑌, 𝑍〉1st 𝑦) |
| 15 | 10, 11 | br1steq 31670 |
. . . . . . . 8
⊢
(〈𝑌, 𝑍〉1st 𝑦 ↔ 𝑦 = 𝑌) |
| 16 | 9, 14, 15 | 3bitri 286 |
. . . . . . 7
⊢ (𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉 ↔ 𝑦 = 𝑌) |
| 17 | 16 | anbi1i 731 |
. . . . . 6
⊢ ((𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉 ∧ 𝑋𝐴𝑦) ↔ (𝑦 = 𝑌 ∧ 𝑋𝐴𝑦)) |
| 18 | 7, 17 | bitri 264 |
. . . . 5
⊢ ((𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ (𝑦 = 𝑌 ∧ 𝑋𝐴𝑦)) |
| 19 | 18 | exbii 1774 |
. . . 4
⊢
(∃𝑦(𝑋𝐴𝑦 ∧ 𝑦◡(1st ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ ∃𝑦(𝑦 = 𝑌 ∧ 𝑋𝐴𝑦)) |
| 20 | | breq2 4657 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋𝐴𝑦 ↔ 𝑋𝐴𝑌)) |
| 21 | 10, 20 | ceqsexv 3242 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝑌 ∧ 𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌) |
| 22 | 6, 19, 21 | 3bitri 286 |
. . 3
⊢ (𝑋(◡(1st ↾ (V × V))
∘ 𝐴)〈𝑌, 𝑍〉 ↔ 𝑋𝐴𝑌) |
| 23 | 4, 5 | brco 5292 |
. . . 4
⊢ (𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)〈𝑌, 𝑍〉 ↔ ∃𝑧(𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉)) |
| 24 | | ancom 466 |
. . . . . 6
⊢ ((𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ (𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉 ∧ 𝑋𝐵𝑧)) |
| 25 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 26 | 25, 5 | brcnv 5305 |
. . . . . . . 8
⊢ (𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉(2nd ↾ (V ×
V))𝑧) |
| 27 | 25 | brres 5402 |
. . . . . . . . 9
⊢
(〈𝑌, 𝑍〉(2nd ↾ (V
× V))𝑧 ↔
(〈𝑌, 𝑍〉2nd 𝑧 ∧ 〈𝑌, 𝑍〉 ∈ (V ×
V))) |
| 28 | 12, 27 | mpbiran2 954 |
. . . . . . . 8
⊢
(〈𝑌, 𝑍〉(2nd ↾ (V
× V))𝑧 ↔
〈𝑌, 𝑍〉2nd 𝑧) |
| 29 | 10, 11 | br2ndeq 31671 |
. . . . . . . 8
⊢
(〈𝑌, 𝑍〉2nd 𝑧 ↔ 𝑧 = 𝑍) |
| 30 | 26, 28, 29 | 3bitri 286 |
. . . . . . 7
⊢ (𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉 ↔ 𝑧 = 𝑍) |
| 31 | 30 | anbi1i 731 |
. . . . . 6
⊢ ((𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉 ∧ 𝑋𝐵𝑧) ↔ (𝑧 = 𝑍 ∧ 𝑋𝐵𝑧)) |
| 32 | 24, 31 | bitri 264 |
. . . . 5
⊢ ((𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ (𝑧 = 𝑍 ∧ 𝑋𝐵𝑧)) |
| 33 | 32 | exbii 1774 |
. . . 4
⊢
(∃𝑧(𝑋𝐵𝑧 ∧ 𝑧◡(2nd ↾ (V ×
V))〈𝑌, 𝑍〉) ↔ ∃𝑧(𝑧 = 𝑍 ∧ 𝑋𝐵𝑧)) |
| 34 | | breq2 4657 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑋𝐵𝑧 ↔ 𝑋𝐵𝑍)) |
| 35 | 11, 34 | ceqsexv 3242 |
. . . 4
⊢
(∃𝑧(𝑧 = 𝑍 ∧ 𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍) |
| 36 | 23, 33, 35 | 3bitri 286 |
. . 3
⊢ (𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)〈𝑌, 𝑍〉 ↔ 𝑋𝐵𝑍) |
| 37 | 22, 36 | anbi12i 733 |
. 2
⊢ ((𝑋(◡(1st ↾ (V × V))
∘ 𝐴)〈𝑌, 𝑍〉 ∧ 𝑋(◡(2nd ↾ (V × V))
∘ 𝐵)〈𝑌, 𝑍〉) ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) |
| 38 | 2, 3, 37 | 3bitri 286 |
1
⊢ (𝑋(𝐴 ⊗ 𝐵)〈𝑌, 𝑍〉 ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) |