Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Visualization version   GIF version

Theorem brtxp 31987
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 31985, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypotheses
Ref Expression
brtxp.1 𝑋 ∈ V
brtxp.2 𝑌 ∈ V
brtxp.3 𝑍 ∈ V
Assertion
Ref Expression
brtxp (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))

Proof of Theorem brtxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 31961 . . 3 (𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
21breqi 4659 . 2 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩)
3 brin 4704 . 2 (𝑋(((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))⟨𝑌, 𝑍⟩ ↔ (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩))
4 brtxp.1 . . . . 5 𝑋 ∈ V
5 opex 4932 . . . . 5 𝑌, 𝑍⟩ ∈ V
64, 5brco 5292 . . . 4 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ ∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩))
7 ancom 466 . . . . . 6 ((𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ∧ 𝑋𝐴𝑦))
8 vex 3203 . . . . . . . . 9 𝑦 ∈ V
98, 5brcnv 5305 . . . . . . . 8 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦)
10 brtxp.2 . . . . . . . . . 10 𝑌 ∈ V
11 brtxp.3 . . . . . . . . . 10 𝑍 ∈ V
1210, 11opelvv 5166 . . . . . . . . 9 𝑌, 𝑍⟩ ∈ (V × V)
138brres 5402 . . . . . . . . 9 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ (⟨𝑌, 𝑍⟩1st 𝑦 ∧ ⟨𝑌, 𝑍⟩ ∈ (V × V)))
1412, 13mpbiran2 954 . . . . . . . 8 (⟨𝑌, 𝑍⟩(1st ↾ (V × V))𝑦 ↔ ⟨𝑌, 𝑍⟩1st 𝑦)
1510, 11br1steq 31670 . . . . . . . 8 (⟨𝑌, 𝑍⟩1st 𝑦𝑦 = 𝑌)
169, 14, 153bitri 286 . . . . . . 7 (𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑦 = 𝑌)
1716anbi1i 731 . . . . . 6 ((𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩ ∧ 𝑋𝐴𝑦) ↔ (𝑦 = 𝑌𝑋𝐴𝑦))
187, 17bitri 264 . . . . 5 ((𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑦 = 𝑌𝑋𝐴𝑦))
1918exbii 1774 . . . 4 (∃𝑦(𝑋𝐴𝑦𝑦(1st ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦))
20 breq2 4657 . . . . 5 (𝑦 = 𝑌 → (𝑋𝐴𝑦𝑋𝐴𝑌))
2110, 20ceqsexv 3242 . . . 4 (∃𝑦(𝑦 = 𝑌𝑋𝐴𝑦) ↔ 𝑋𝐴𝑌)
226, 19, 213bitri 286 . . 3 (𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐴𝑌)
234, 5brco 5292 . . . 4 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ ∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩))
24 ancom 466 . . . . . 6 ((𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ∧ 𝑋𝐵𝑧))
25 vex 3203 . . . . . . . . 9 𝑧 ∈ V
2625, 5brcnv 5305 . . . . . . . 8 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧)
2725brres 5402 . . . . . . . . 9 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ (⟨𝑌, 𝑍⟩2nd 𝑧 ∧ ⟨𝑌, 𝑍⟩ ∈ (V × V)))
2812, 27mpbiran2 954 . . . . . . . 8 (⟨𝑌, 𝑍⟩(2nd ↾ (V × V))𝑧 ↔ ⟨𝑌, 𝑍⟩2nd 𝑧)
2910, 11br2ndeq 31671 . . . . . . . 8 (⟨𝑌, 𝑍⟩2nd 𝑧𝑧 = 𝑍)
3026, 28, 293bitri 286 . . . . . . 7 (𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ↔ 𝑧 = 𝑍)
3130anbi1i 731 . . . . . 6 ((𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩ ∧ 𝑋𝐵𝑧) ↔ (𝑧 = 𝑍𝑋𝐵𝑧))
3224, 31bitri 264 . . . . 5 ((𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ (𝑧 = 𝑍𝑋𝐵𝑧))
3332exbii 1774 . . . 4 (∃𝑧(𝑋𝐵𝑧𝑧(2nd ↾ (V × V))⟨𝑌, 𝑍⟩) ↔ ∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧))
34 breq2 4657 . . . . 5 (𝑧 = 𝑍 → (𝑋𝐵𝑧𝑋𝐵𝑍))
3511, 34ceqsexv 3242 . . . 4 (∃𝑧(𝑧 = 𝑍𝑋𝐵𝑧) ↔ 𝑋𝐵𝑍)
3623, 33, 353bitri 286 . . 3 (𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩ ↔ 𝑋𝐵𝑍)
3722, 36anbi12i 733 . 2 ((𝑋((1st ↾ (V × V)) ∘ 𝐴)⟨𝑌, 𝑍⟩ ∧ 𝑋((2nd ↾ (V × V)) ∘ 𝐵)⟨𝑌, 𝑍⟩) ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
382, 3, 373bitri 286 1 (𝑋(𝐴𝐵)⟨𝑌, 𝑍⟩ ↔ (𝑋𝐴𝑌𝑋𝐵𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cin 3573  cop 4183   class class class wbr 4653   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  1st c1st 7166  2nd c2nd 7167  ctxp 31937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961
This theorem is referenced by:  brtxp2  31988  pprodss4v  31991  brpprod  31992  brsset  31996  brtxpsd  32001  elfuns  32022
  Copyright terms: Public domain W3C validator