Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Visualization version   Unicode version

Theorem brtxp 31987
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 31985, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypotheses
Ref Expression
brtxp.1  |-  X  e. 
_V
brtxp.2  |-  Y  e. 
_V
brtxp.3  |-  Z  e. 
_V
Assertion
Ref Expression
brtxp  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
( X A Y  /\  X B Z ) )

Proof of Theorem brtxp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 31961 . . 3  |-  ( A 
(x)  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
21breqi 4659 . 2  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
X ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) ) <. Y ,  Z >. )
3 brin 4704 . 2  |-  ( X ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
<. Y ,  Z >.  <->  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A ) <. Y ,  Z >.  /\  X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) <. Y ,  Z >. ) )
4 brtxp.1 . . . . 5  |-  X  e. 
_V
5 opex 4932 . . . . 5  |-  <. Y ,  Z >.  e.  _V
64, 5brco 5292 . . . 4  |-  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
) <. Y ,  Z >.  <->  E. y ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. ) )
7 ancom 466 . . . . . 6  |-  ( ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( y `' ( 1st  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X A y ) )
8 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
98, 5brcnv 5305 . . . . . . . 8  |-  ( y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y )
10 brtxp.2 . . . . . . . . . 10  |-  Y  e. 
_V
11 brtxp.3 . . . . . . . . . 10  |-  Z  e. 
_V
1210, 11opelvv 5166 . . . . . . . . 9  |-  <. Y ,  Z >.  e.  ( _V 
X.  _V )
138brres 5402 . . . . . . . . 9  |-  ( <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y  <-> 
( <. Y ,  Z >. 1st y  /\  <. Y ,  Z >.  e.  ( _V  X.  _V )
) )
1412, 13mpbiran2 954 . . . . . . . 8  |-  ( <. Y ,  Z >. ( 1st  |`  ( _V  X.  _V ) ) y  <->  <. Y ,  Z >. 1st y )
1510, 11br1steq 31670 . . . . . . . 8  |-  ( <. Y ,  Z >. 1st y  <->  y  =  Y )
169, 14, 153bitri 286 . . . . . . 7  |-  ( y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  y  =  Y )
1716anbi1i 731 . . . . . 6  |-  ( ( y `' ( 1st  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X A
y )  <->  ( y  =  Y  /\  X A y ) )
187, 17bitri 264 . . . . 5  |-  ( ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( y  =  Y  /\  X A y ) )
1918exbii 1774 . . . 4  |-  ( E. y ( X A y  /\  y `' ( 1st  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <->  E. y ( y  =  Y  /\  X A y ) )
20 breq2 4657 . . . . 5  |-  ( y  =  Y  ->  ( X A y  <->  X A Y ) )
2110, 20ceqsexv 3242 . . . 4  |-  ( E. y ( y  =  Y  /\  X A y )  <->  X A Y )
226, 19, 213bitri 286 . . 3  |-  ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
) <. Y ,  Z >.  <-> 
X A Y )
234, 5brco 5292 . . . 4  |-  ( X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) <. Y ,  Z >.  <->  E. z ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. ) )
24 ancom 466 . . . . . 6  |-  ( ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( z `' ( 2nd  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X B z ) )
25 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
2625, 5brcnv 5305 . . . . . . . 8  |-  ( z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z )
2725brres 5402 . . . . . . . . 9  |-  ( <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z  <-> 
( <. Y ,  Z >. 2nd z  /\  <. Y ,  Z >.  e.  ( _V  X.  _V )
) )
2812, 27mpbiran2 954 . . . . . . . 8  |-  ( <. Y ,  Z >. ( 2nd  |`  ( _V  X.  _V ) ) z  <->  <. Y ,  Z >. 2nd z )
2910, 11br2ndeq 31671 . . . . . . . 8  |-  ( <. Y ,  Z >. 2nd z  <->  z  =  Z )
3026, 28, 293bitri 286 . . . . . . 7  |-  ( z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >.  <->  z  =  Z )
3130anbi1i 731 . . . . . 6  |-  ( ( z `' ( 2nd  |`  ( _V  X.  _V ) ) <. Y ,  Z >.  /\  X B
z )  <->  ( z  =  Z  /\  X B z ) )
3224, 31bitri 264 . . . . 5  |-  ( ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <-> 
( z  =  Z  /\  X B z ) )
3332exbii 1774 . . . 4  |-  ( E. z ( X B z  /\  z `' ( 2nd  |`  ( _V  X.  _V ) )
<. Y ,  Z >. )  <->  E. z ( z  =  Z  /\  X B z ) )
34 breq2 4657 . . . . 5  |-  ( z  =  Z  ->  ( X B z  <->  X B Z ) )
3511, 34ceqsexv 3242 . . . 4  |-  ( E. z ( z  =  Z  /\  X B z )  <->  X B Z )
3623, 33, 353bitri 286 . . 3  |-  ( X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) <. Y ,  Z >.  <-> 
X B Z )
3722, 36anbi12i 733 . 2  |-  ( ( X ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A ) <. Y ,  Z >.  /\  X ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) <. Y ,  Z >. )  <-> 
( X A Y  /\  X B Z ) )
382, 3, 373bitri 286 1  |-  ( X ( A  (x)  B
) <. Y ,  Z >.  <-> 
( X A Y  /\  X B Z ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   1stc1st 7166   2ndc2nd 7167    (x) ctxp 31937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961
This theorem is referenced by:  brtxp2  31988  pprodss4v  31991  brpprod  31992  brsset  31996  brtxpsd  32001  elfuns  32022
  Copyright terms: Public domain W3C validator