MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl2 Structured version   Visualization version   GIF version

Theorem btwnhl2 25508
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl2.3 (𝜑𝐶𝐵)
Assertion
Ref Expression
btwnhl2 (𝜑𝐶(𝐾𝐵)𝐴)

Proof of Theorem btwnhl2
StepHypRef Expression
1 btwnhl2.3 . . 3 (𝜑𝐶𝐵)
2 btwnhl1.2 . . 3 (𝜑𝐴𝐵)
3 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
4 eqid 2622 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
5 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
8 ishlg.c . . . . 5 (𝜑𝐶𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
10 btwnhl1.1 . . . . 5 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
113, 4, 5, 6, 7, 8, 9, 10tgbtwncom 25383 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐴))
1211orcd 407 . . 3 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
131, 2, 123jca 1242 . 2 (𝜑 → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
14 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
153, 5, 14, 8, 7, 9, 6ishlg 25497 . 2 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
1613, 15mpbird 247 1 (𝜑𝐶(𝐾𝐵)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-hlg 25496
This theorem is referenced by:  outpasch  25647  hlpasch  25648
  Copyright terms: Public domain W3C validator