MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpasch Structured version   Visualization version   GIF version

Theorem hlpasch 25648
Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
Hypotheses
Ref Expression
hlpasch.p 𝑃 = (Base‘𝐺)
hlpasch.i 𝐼 = (Itv‘𝐺)
hlpasch.k 𝐾 = (hlG‘𝐺)
hlpasch.g (𝜑𝐺 ∈ TarskiG)
hlpasch.1 (𝜑𝐴𝑃)
hlpasch.2 (𝜑𝐵𝑃)
hlpasch.3 (𝜑𝐶𝑃)
hlpasch.4 (𝜑𝑋𝑃)
hlpasch.5 (𝜑𝐷𝑃)
hlpasch.6 (𝜑𝐴𝐵)
hlpasch.7 (𝜑𝐶(𝐾𝐵)𝐷)
hlpasch.8 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
Assertion
Ref Expression
hlpasch (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝐾   𝑃,𝑒   𝑒,𝑋   𝜑,𝑒

Proof of Theorem hlpasch
StepHypRef Expression
1 hlpasch.p . . . 4 𝑃 = (Base‘𝐺)
2 hlpasch.i . . . 4 𝐼 = (Itv‘𝐺)
3 eqid 2622 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
4 hlpasch.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 hlpasch.5 . . . . 5 (𝜑𝐷𝑃)
76adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
8 hlpasch.4 . . . . 5 (𝜑𝑋𝑃)
98adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝑋𝑃)
10 hlpasch.3 . . . . 5 (𝜑𝐶𝑃)
1110adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
12 hlpasch.2 . . . . 5 (𝜑𝐵𝑃)
1312adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
14 hlpasch.1 . . . . 5 (𝜑𝐴𝑃)
1514adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴𝑃)
16 eqid 2622 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
17 simpr 477 . . . . 5 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
181, 16, 2, 5, 13, 11, 7, 17tgbtwncom 25383 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐷𝐼𝐵))
19 hlpasch.8 . . . . 5 (𝜑𝐴 ∈ (𝑋𝐼𝐶))
2019adantr 481 . . . 4 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐴 ∈ (𝑋𝐼𝐶))
211, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20outpasch 25647 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)))
22 hlpasch.k . . . . . . 7 𝐾 = (hlG‘𝐺)
23 simplr 792 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝑃)
2413ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐵𝑃)
2515ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝑃)
265ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐺 ∈ TarskiG)
27 simprr 796 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝐵𝐼𝑒))
281, 16, 2, 26, 24, 25, 23, 27tgbtwncom 25383 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴 ∈ (𝑒𝐼𝐵))
2926adantr 481 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
3024adantr 481 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
3125adantr 481 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝑃)
3227adantr 481 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝑒))
33 simpr 477 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
3433oveq2d 6666 . . . . . . . . . . . 12 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → (𝐵𝐼𝑒) = (𝐵𝐼𝐵))
3532, 34eleqtrd 2703 . . . . . . . . . . 11 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐵))
361, 16, 2, 29, 30, 31, 35axtgbtwnid 25365 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐴)
3736eqcomd 2628 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴 = 𝐵)
38 hlpasch.6 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3938ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴𝐵)
4039adantr 481 . . . . . . . . . 10 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → 𝐴𝐵)
4140neneqd 2799 . . . . . . . . 9 (((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) ∧ 𝑒 = 𝐵) → ¬ 𝐴 = 𝐵)
4237, 41pm2.65da 600 . . . . . . . 8 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → ¬ 𝑒 = 𝐵)
4342neqned 2801 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒𝐵)
441, 2, 22, 23, 24, 25, 26, 25, 28, 43, 39btwnhl2 25508 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐴(𝐾𝐵)𝑒)
457ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝐷𝑃)
469ad2antrr 762 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑋𝑃)
47 simprl 794 . . . . . . 7 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝐷𝐼𝑋))
481, 16, 2, 26, 45, 23, 46, 47tgbtwncom 25383 . . . . . 6 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → 𝑒 ∈ (𝑋𝐼𝐷))
4944, 48jca 554 . . . . 5 ((((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
5049ex 450 . . . 4 (((𝜑𝐶 ∈ (𝐵𝐼𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5150reximdva 3017 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝑋) ∧ 𝐴 ∈ (𝐵𝐼𝑒)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
5221, 51mpd 15 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
536ad2antrr 762 . . . . . 6 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐷𝑃)
5453adantr 481 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷𝑃)
55 simpr 477 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
5655breq2d 4665 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
5755eleq1d 2686 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
5856, 57anbi12d 747 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
5914ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝑃)
6059adantr 481 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝑃)
6112ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐵𝑃)
6261adantr 481 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐵𝑃)
634ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
6463adantr 481 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐺 ∈ TarskiG)
65 hlpasch.7 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐷)
661, 2, 22, 10, 6, 12, 4, 65hlcomd 25499 . . . . . . . . 9 (𝜑𝐷(𝐾𝐵)𝐶)
6766ad3antrrr 766 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐶)
6810adantr 481 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
6968ad2antrr 762 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝑃)
7019adantr 481 . . . . . . . . . . 11 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝑋𝐼𝐶))
7170ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
72 simpr 477 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
7372oveq1d 6665 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝑋𝐼𝐶) = (𝐵𝐼𝐶))
7471, 73eleqtrd 2703 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴 ∈ (𝐵𝐼𝐶))
751, 2, 22, 10, 6, 12, 4ishlg 25497 . . . . . . . . . . . 12 (𝜑 → (𝐶(𝐾𝐵)𝐷 ↔ (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))))
7665, 75mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐶𝐵𝐷𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))))
7776simp1d 1073 . . . . . . . . . 10 (𝜑𝐶𝐵)
7877ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐶𝐵)
7938ad2antrr 762 . . . . . . . . . 10 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝐴𝐵)
8079adantr 481 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴𝐵)
811, 2, 22, 54, 69, 62, 64, 60, 74, 78, 80hlbtwn 25506 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐷(𝐾𝐵)𝐶𝐷(𝐾𝐵)𝐴))
8267, 81mpbid 222 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷(𝐾𝐵)𝐴)
831, 2, 22, 54, 60, 62, 64, 82hlcomd 25499 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
848ad2antrr 762 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋𝑃)
8584adantr 481 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝑋𝑃)
861, 16, 2, 64, 85, 54tgbtwntriv2 25382 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → 𝐷 ∈ (𝑋𝐼𝐷))
8783, 86jca 554 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
8854, 58, 87rspcedvd 3317 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋 = 𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
8984ad2antrr 762 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋𝑃)
90 simpr 477 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
9190breq2d 4665 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝑋))
9290eleq1d 2686 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝑋 ∈ (𝑋𝐼𝐷)))
9391, 92anbi12d 747 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
9493ad4ant14 1293 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) ∧ 𝑒 = 𝑋) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷))))
95 simpr 477 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝑋)
961, 16, 2, 63, 84, 53tgbtwntriv1 25386 . . . . . . . 8 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → 𝑋 ∈ (𝑋𝐼𝐷))
9796ad2antrr 762 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → 𝑋 ∈ (𝑋𝐼𝐷))
9895, 97jca 554 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → (𝐴(𝐾𝐵)𝑋𝑋 ∈ (𝑋𝐼𝐷)))
9989, 94, 98rspcedvd 3317 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐴(𝐾𝐵)𝑋) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
10053ad2antrr 762 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝑃)
101 simpr 477 . . . . . . . 8 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → 𝑒 = 𝐷)
102101breq2d 4665 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝐴(𝐾𝐵)𝑒𝐴(𝐾𝐵)𝐷))
103101eleq1d 2686 . . . . . . 7 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → (𝑒 ∈ (𝑋𝐼𝐷) ↔ 𝐷 ∈ (𝑋𝐼𝐷)))
104102, 103anbi12d 747 . . . . . 6 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) ∧ 𝑒 = 𝐷) → ((𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)) ↔ (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷))))
10579ad2antrr 762 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝐵)
1061, 2, 22, 10, 6, 12, 4, 65hlne2 25501 . . . . . . . . . 10 (𝜑𝐷𝐵)
107106ad4antr 768 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷𝐵)
10863ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐺 ∈ TarskiG)
10961ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵𝑃)
11059ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴𝑃)
11168ad2antrr 762 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐶𝑃)
112111adantr 481 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐶𝑃)
11384ad2antrr 762 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝑋𝑃)
114 simpr 477 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐵 ∈ (𝑋𝐼𝐴))
11570ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋𝐼𝐶))
116115adantr 481 . . . . . . . . . . 11 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝑋𝐼𝐶))
1171, 16, 2, 108, 113, 109, 110, 112, 114, 116tgbtwnexch3 25389 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴 ∈ (𝐵𝐼𝐶))
118 simp-4r 807 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
1191, 2, 108, 109, 110, 100, 112, 117, 118tgbtwnconn3 25472 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))
120105, 107, 1193jca 1242 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴))))
1211, 2, 22, 14, 6, 12, 4ishlg 25497 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
122121ad4antr 768 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷 ↔ (𝐴𝐵𝐷𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐴)))))
123120, 122mpbird 247 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐴(𝐾𝐵)𝐷)
1241, 16, 2, 108, 113, 100tgbtwntriv2 25382 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → 𝐷 ∈ (𝑋𝐼𝐷))
125123, 124jca 554 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → (𝐴(𝐾𝐵)𝐷𝐷 ∈ (𝑋𝐼𝐷)))
126100, 104, 125rspcedvd 3317 . . . . 5 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝐵 ∈ (𝑋𝐼𝐴)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1278ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝑃)
12812ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝑃)
12914ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴𝑃)
1304ad3antrrr 766 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
131 simpr 477 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋𝐵)
132131neneqd 2799 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ¬ 𝑋 = 𝐵)
13363adantr 481 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐺 ∈ TarskiG)
134133adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐺 ∈ TarskiG)
135127adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋𝑃)
136129adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴𝑃)
137115adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝐶))
138 simpr 477 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐶)
139138oveq2d 6666 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝑋𝐼𝑋) = (𝑋𝐼𝐶))
140137, 139eleqtrrd 2704 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝐴 ∈ (𝑋𝐼𝑋))
1411, 16, 2, 134, 135, 136, 140axtgbtwnid 25365 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → 𝑋 = 𝐴)
142141olcd 408 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋 = 𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
143133adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐺 ∈ TarskiG)
144128adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵𝑃)
145111adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑃)
146127adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝑃)
147129adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐴𝑃)
148 simpr 477 . . . . . . . . . . . . . . . 16 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝑋𝐶)
149148necomd 2849 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐶𝑋)
150149neneqd 2799 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → ¬ 𝐶 = 𝑋)
15153adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝑃)
152106ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷𝐵)
153 simplr 792 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
1541, 2, 3, 133, 151, 128, 127, 152, 153lncom 25517 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝑋 ∈ (𝐷(LineG‘𝐺)𝐵))
15577necomd 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵𝐶)
156155ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐵𝐶)
15766ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷(𝐾𝐵)𝐶)
1581, 2, 22, 151, 111, 128, 133, 3, 157hlln 25502 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐶(LineG‘𝐺)𝐵))
1591, 2, 3, 133, 128, 111, 151, 156, 158lncom 25517 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐶))
160159orcd 407 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐷 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1611, 2, 3, 133, 127, 151, 128, 111, 154, 160coltr 25542 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐶) ∨ 𝐵 = 𝐶))
1621, 3, 2, 133, 128, 111, 127, 161colrot1 25454 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝐶(LineG‘𝐺)𝑋) ∨ 𝐶 = 𝑋))
163162orcomd 403 . . . . . . . . . . . . . . . 16 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
164163adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
165164ord 392 . . . . . . . . . . . . . 14 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (¬ 𝐶 = 𝑋𝐵 ∈ (𝐶(LineG‘𝐺)𝑋)))
166150, 165mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → 𝐵 ∈ (𝐶(LineG‘𝐺)𝑋))
1671, 3, 2, 133, 127, 129, 111, 115btwncolg3 25452 . . . . . . . . . . . . . 14 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
168167adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐶 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1691, 2, 3, 143, 144, 145, 146, 147, 166, 168coltr 25542 . . . . . . . . . . . 12 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) ∧ 𝑋𝐶) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
170142, 169pm2.61dane 2881 . . . . . . . . . . 11 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐵 ∈ (𝑋(LineG‘𝐺)𝐴) ∨ 𝑋 = 𝐴))
1711, 3, 2, 133, 127, 129, 128, 170colrot2 25455 . . . . . . . . . 10 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝐵(LineG‘𝐺)𝑋) ∨ 𝐵 = 𝑋))
1721, 3, 2, 133, 128, 127, 129, 171colcom 25453 . . . . . . . . 9 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
173172orcomd 403 . . . . . . . 8 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
174173ord 392 . . . . . . 7 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (¬ 𝑋 = 𝐵𝐴 ∈ (𝑋(LineG‘𝐺)𝐵)))
175132, 174mpd 15 . . . . . 6 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → 𝐴 ∈ (𝑋(LineG‘𝐺)𝐵))
1761, 2, 22, 127, 128, 129, 130, 129, 3, 175lnhl 25510 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → (𝐴(𝐾𝐵)𝑋𝐵 ∈ (𝑋𝐼𝐴)))
17799, 126, 176mpjaodan 827 . . . 4 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑋𝐵) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
17888, 177pm2.61dane 2881 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
1794adantr 481 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
1808adantr 481 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝑋𝑃)
18112adantr 481 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18214adantr 481 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
1836adantr 481 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
184 simpr 477 . . . . . 6 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
1851, 16, 2, 179, 180, 181, 68, 182, 183, 70, 184axtgpasch 25366 . . . . 5 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
186185adantr 481 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)))
187 simplr 792 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝑃)
188182ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴𝑃)
189181ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝑃)
190179ad3antrrr 766 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐺 ∈ TarskiG)
191 simprl 794 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐴𝐼𝐵))
1921, 16, 2, 190, 188, 187, 189, 191tgbtwncom 25383 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝐵𝐼𝐴))
19338necomd 2849 . . . . . . . . . 10 (𝜑𝐵𝐴)
194193ad4antr 768 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐵𝐴)
195190adantr 481 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐺 ∈ TarskiG)
1966ad5antr 770 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑃)
1978ad5antr 770 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑋𝑃)
198189adantr 481 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝑃)
199 simp-4r 807 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷))
200106necomd 2849 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝐷)
201200ad5antr 770 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
202201neneqd 2799 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐵 = 𝐷)
203199, 202jca 554 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
204 ioran 511 . . . . . . . . . . . . . . 15 (¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷) ↔ (¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∧ ¬ 𝐵 = 𝐷))
205203, 204sylibr 224 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝑋 ∈ (𝐵(LineG‘𝐺)𝐷) ∨ 𝐵 = 𝐷))
2061, 3, 2, 195, 198, 196, 197, 205ncolrot2 25458 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ (𝐷 ∈ (𝑋(LineG‘𝐺)𝐵) ∨ 𝑋 = 𝐵))
207 simpr 477 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
208187adantr 481 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒𝑃)
2091, 2, 3, 195, 196, 197, 198, 206ncolne1 25520 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
210 simplrr 801 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷𝐼𝑋))
2111, 2, 3, 195, 196, 197, 208, 209, 210btwnlng1 25514 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝑒 ∈ (𝐷(LineG‘𝐺)𝑋))
212207, 211eqeltrrd 2702 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐷(LineG‘𝐺)𝑋))
2131, 3, 2, 195, 196, 197, 212tglngne 25445 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝑋)
2141, 2, 3, 195, 196, 197, 213tglinerflx1 25528 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐷(LineG‘𝐺)𝑋))
215106ad5antr 770 . . . . . . . . . . . . . . 15 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷𝐵)
216215necomd 2849 . . . . . . . . . . . . . 14 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵𝐷)
2171, 2, 3, 195, 198, 196, 216tglinerflx1 25528 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 ∈ (𝐵(LineG‘𝐺)𝐷))
2181, 2, 3, 195, 198, 196, 216tglinerflx2 25529 . . . . . . . . . . . . 13 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 ∈ (𝐵(LineG‘𝐺)𝐷))
2191, 2, 3, 195, 196, 197, 198, 196, 206, 212, 214, 217, 218tglineinteq 25540 . . . . . . . . . . . 12 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐵 = 𝐷)
220219eqcomd 2628 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → 𝐷 = 𝐵)
221215neneqd 2799 . . . . . . . . . . 11 ((((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) ∧ 𝑒 = 𝐵) → ¬ 𝐷 = 𝐵)
222220, 221pm2.65da 600 . . . . . . . . . 10 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → ¬ 𝑒 = 𝐵)
223222neqned 2801 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒𝐵)
2241, 2, 22, 189, 188, 187, 190, 188, 192, 194, 223btwnhl1 25507 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒(𝐾𝐵)𝐴)
2251, 2, 22, 187, 188, 189, 190, 224hlcomd 25499 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝐴(𝐾𝐵)𝑒)
226179ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐺 ∈ TarskiG)
227183ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝐷𝑃)
228 simplr 792 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒𝑃)
229180ad3antrrr 766 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑋𝑃)
230 simpr 477 . . . . . . . . 9 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝐷𝐼𝑋))
2311, 16, 2, 226, 227, 228, 229, 230tgbtwncom 25383 . . . . . . . 8 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → 𝑒 ∈ (𝑋𝐼𝐷))
232231adantrl 752 . . . . . . 7 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → 𝑒 ∈ (𝑋𝐼𝐷))
233225, 232jca 554 . . . . . 6 (((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) ∧ (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋))) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
234233ex 450 . . . . 5 ((((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) ∧ 𝑒𝑃) → ((𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
235234reximdva 3017 . . . 4 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → (∃𝑒𝑃 (𝑒 ∈ (𝐴𝐼𝐵) ∧ 𝑒 ∈ (𝐷𝐼𝑋)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷))))
236186, 235mpd 15 . . 3 (((𝜑𝐷 ∈ (𝐵𝐼𝐶)) ∧ ¬ 𝑋 ∈ (𝐵(LineG‘𝐺)𝐷)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
237178, 236pm2.61dan 832 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
23876simp3d 1075 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
23952, 237, 238mpjaodan 827 1 (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  inaghl  25731
  Copyright terms: Public domain W3C validator