MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlg Structured version   Visualization version   GIF version

Theorem ishlg 25497
Description: Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(𝐾𝐶)𝐵 means that 𝐴 and 𝐵 are on the same ray with initial point 𝐶. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g. ((𝐾𝐶) “ {𝐴}) (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
Assertion
Ref Expression
ishlg (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))

Proof of Theorem ishlg
Dummy variables 𝑎 𝑏 𝑐 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
21neeq1d 2853 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝐶𝐴𝐶))
3 simpr 477 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
43neeq1d 2853 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝐶𝐵𝐶))
53oveq2d 6666 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑏) = (𝐶𝐼𝐵))
61, 5eleq12d 2695 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 ∈ (𝐶𝐼𝑏) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
71oveq2d 6666 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝐶𝐼𝑎) = (𝐶𝐼𝐴))
83, 7eleq12d 2695 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏 ∈ (𝐶𝐼𝑎) ↔ 𝐵 ∈ (𝐶𝐼𝐴)))
96, 8orbi12d 746 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)) ↔ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
102, 4, 93anbi123d 1399 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))) ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
11 eqid 2622 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}
1210, 11brab2a 5194 . . 3 (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
1312a1i 11 . 2 (𝜑 → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵 ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
14 ishlg.k . . . . 5 𝐾 = (hlG‘𝐺)
15 ishlg.g . . . . . 6 (𝜑𝐺𝑉)
16 elex 3212 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
17 fveq2 6191 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
18 ishlg.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
1917, 18syl6eqr 2674 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
2019eleq2d 2687 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔) ↔ 𝑎𝑃))
2119eleq2d 2687 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑏 ∈ (Base‘𝑔) ↔ 𝑏𝑃))
2220, 21anbi12d 747 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ↔ (𝑎𝑃𝑏𝑃)))
23 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
24 ishlg.i . . . . . . . . . . . . . . 15 𝐼 = (Itv‘𝐺)
2523, 24syl6eqr 2674 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
2625oveqd 6667 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑏) = (𝑐𝐼𝑏))
2726eleq2d 2687 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ↔ 𝑎 ∈ (𝑐𝐼𝑏)))
2825oveqd 6667 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (𝑐(Itv‘𝑔)𝑎) = (𝑐𝐼𝑎))
2928eleq2d 2687 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑏 ∈ (𝑐(Itv‘𝑔)𝑎) ↔ 𝑏 ∈ (𝑐𝐼𝑎)))
3027, 29orbi12d 746 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)) ↔ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))
31303anbi3d 1405 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))) ↔ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))))
3222, 31anbi12d 747 . . . . . . . . 9 (𝑔 = 𝐺 → (((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))))
3332opabbidv 4716 . . . . . . . 8 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))})
3419, 33mpteq12dv 4733 . . . . . . 7 (𝑔 = 𝐺 → (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
35 df-hlg 25496 . . . . . . 7 hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
36 fvex 6201 . . . . . . . . 9 (Base‘𝐺) ∈ V
3718, 36eqeltri 2697 . . . . . . . 8 𝑃 ∈ V
3837mptex 6486 . . . . . . 7 (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}) ∈ V
3934, 35, 38fvmpt 6282 . . . . . 6 (𝐺 ∈ V → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
4015, 16, 393syl 18 . . . . 5 (𝜑 → (hlG‘𝐺) = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
4114, 40syl5eq 2668 . . . 4 (𝜑𝐾 = (𝑐𝑃 ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))}))
42 neeq2 2857 . . . . . . . 8 (𝑐 = 𝐶 → (𝑎𝑐𝑎𝐶))
43 neeq2 2857 . . . . . . . 8 (𝑐 = 𝐶 → (𝑏𝑐𝑏𝐶))
44 oveq1 6657 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑏) = (𝐶𝐼𝑏))
4544eleq2d 2687 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑎 ∈ (𝑐𝐼𝑏) ↔ 𝑎 ∈ (𝐶𝐼𝑏)))
46 oveq1 6657 . . . . . . . . . 10 (𝑐 = 𝐶 → (𝑐𝐼𝑎) = (𝐶𝐼𝑎))
4746eleq2d 2687 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑏 ∈ (𝑐𝐼𝑎) ↔ 𝑏 ∈ (𝐶𝐼𝑎)))
4845, 47orbi12d 746 . . . . . . . 8 (𝑐 = 𝐶 → ((𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)) ↔ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))
4942, 43, 483anbi123d 1399 . . . . . . 7 (𝑐 = 𝐶 → ((𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))) ↔ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎)))))
5049anbi2d 740 . . . . . 6 (𝑐 = 𝐶 → (((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎)))) ↔ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))))
5150opabbidv 4716 . . . . 5 (𝑐 = 𝐶 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
5251adantl 482 . . . 4 ((𝜑𝑐 = 𝐶) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑐𝐼𝑎))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
53 ishlg.c . . . 4 (𝜑𝐶𝑃)
5437, 37xpex 6962 . . . . . 6 (𝑃 × 𝑃) ∈ V
55 opabssxp 5193 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ⊆ (𝑃 × 𝑃)
5654, 55ssexi 4803 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V
5756a1i 11 . . . 4 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))} ∈ V)
5841, 52, 53, 57fvmptd 6288 . . 3 (𝜑 → (𝐾𝐶) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))})
5958breqd 4664 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑃𝑏𝑃) ∧ (𝑎𝐶𝑏𝐶 ∧ (𝑎 ∈ (𝐶𝐼𝑏) ∨ 𝑏 ∈ (𝐶𝐼𝑎))))}𝐵))
60 ishlg.a . . . 4 (𝜑𝐴𝑃)
61 ishlg.b . . . 4 (𝜑𝐵𝑃)
6260, 61jca 554 . . 3 (𝜑 → (𝐴𝑃𝐵𝑃))
6362biantrurd 529 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))))
6413, 59, 633bitr4d 300 1 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200   class class class wbr 4653  {copab 4712  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  Basecbs 15857  Itvcitv 25335  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-hlg 25496
This theorem is referenced by:  hlcomb  25498  hlne1  25500  hlne2  25501  hlln  25502  hlid  25504  hltr  25505  hlbtwn  25506  btwnhl1  25507  btwnhl2  25508  btwnhl  25509  lnhl  25510  hlcgrex  25511  mirhl  25574  mirbtwnhl  25575  mirhl2  25576  hlperpnel  25617  opphllem4  25642  opphl  25646  hlpasch  25648  lnopp2hpgb  25655  cgracgr  25710  cgraswap  25712  cgrahl  25718  cgracol  25719
  Copyright terms: Public domain W3C validator