MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caoftrn Structured version   Visualization version   GIF version

Theorem caoftrn 6932
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caoftrn.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
Assertion
Ref Expression
caoftrn (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caoftrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caoftrn.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
21ralrimivvva 2972 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
32adantr 481 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 breq1 4656 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
1110anbi1d 741 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧)))
12 breq1 4656 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑈𝑧 ↔ (𝐹𝑤)𝑈𝑧))
1311, 12imbi12d 334 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) ↔ (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
14 breq2 4657 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
15 breq1 4656 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑇𝑧 ↔ (𝐺𝑤)𝑇𝑧))
1614, 15anbi12d 747 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧)))
1716imbi1d 331 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
18 breq2 4657 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑇𝑧 ↔ (𝐺𝑤)𝑇(𝐻𝑤)))
1918anbi2d 740 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
20 breq2 4657 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑈𝑧 ↔ (𝐹𝑤)𝑈(𝐻𝑤)))
2119, 20imbi12d 334 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
2213, 17, 21rspc3v 3325 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
235, 7, 9, 22syl3anc 1326 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
243, 23mpd 15 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤)))
2524ralimdva 2962 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
26 ffn 6045 . . . . . 6 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
274, 26syl 17 . . . . 5 (𝜑𝐹 Fn 𝐴)
28 ffn 6045 . . . . . 6 (𝐺:𝐴𝑆𝐺 Fn 𝐴)
296, 28syl 17 . . . . 5 (𝜑𝐺 Fn 𝐴)
30 caofref.1 . . . . 5 (𝜑𝐴𝑉)
31 inidm 3822 . . . . 5 (𝐴𝐴) = 𝐴
32 eqidd 2623 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
33 eqidd 2623 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
3427, 29, 30, 30, 31, 32, 33ofrfval 6905 . . . 4 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
35 ffn 6045 . . . . . 6 (𝐻:𝐴𝑆𝐻 Fn 𝐴)
368, 35syl 17 . . . . 5 (𝜑𝐻 Fn 𝐴)
37 eqidd 2623 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
3829, 36, 30, 30, 31, 33, 37ofrfval 6905 . . . 4 (𝜑 → (𝐺𝑟 𝑇𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
3934, 38anbi12d 747 . . 3 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤))))
40 r19.26 3064 . . 3 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
4139, 40syl6bbr 278 . 2 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
4227, 36, 30, 30, 31, 32, 37ofrfval 6905 . 2 (𝜑 → (𝐹𝑟 𝑈𝐻 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
4325, 41, 423imtr4d 283 1 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653   Fn wfn 5883  wf 5884  cfv 5888  𝑟 cofr 6896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ofr 6898
This theorem is referenced by:  gsumbagdiaglem  19375  itg2le  23506
  Copyright terms: Public domain W3C validator