MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiaglem Structured version   Visualization version   GIF version

Theorem gsumbagdiaglem 19375
Description: Lemma for gsumbagdiag 19376. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
Assertion
Ref Expression
gsumbagdiaglem ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑌)}))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem gsumbagdiaglem
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 796 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})
2 breq1 4656 . . . . . 6 (𝑥 = 𝑌 → (𝑥𝑟 ≤ (𝐹𝑓𝑋) ↔ 𝑌𝑟 ≤ (𝐹𝑓𝑋)))
32elrab 3363 . . . . 5 (𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)} ↔ (𝑌𝐷𝑌𝑟 ≤ (𝐹𝑓𝑋)))
41, 3sylib 208 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑌𝐷𝑌𝑟 ≤ (𝐹𝑓𝑋)))
54simpld 475 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌𝐷)
64simprd 479 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌𝑟 ≤ (𝐹𝑓𝑋))
7 gsumbagdiag.i . . . . . . 7 (𝜑𝐼𝑉)
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝐼𝑉)
9 gsumbagdiag.f . . . . . . 7 (𝜑𝐹𝐷)
109adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝐹𝐷)
11 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋𝑆)
12 breq1 4656 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦𝑟𝐹𝑋𝑟𝐹))
13 psrbagconf1o.1 . . . . . . . . . 10 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
1412, 13elrab2 3366 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋𝑟𝐹))
1511, 14sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑋𝐷𝑋𝑟𝐹))
1615simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋𝐷)
17 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1817psrbagf 19365 . . . . . . 7 ((𝐼𝑉𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
198, 16, 18syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋:𝐼⟶ℕ0)
2015simprd 479 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋𝑟𝐹)
2117psrbagcon 19371 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝑋:𝐼⟶ℕ0𝑋𝑟𝐹)) → ((𝐹𝑓𝑋) ∈ 𝐷 ∧ (𝐹𝑓𝑋) ∘𝑟𝐹))
228, 10, 19, 20, 21syl13anc 1328 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → ((𝐹𝑓𝑋) ∈ 𝐷 ∧ (𝐹𝑓𝑋) ∘𝑟𝐹))
2322simprd 479 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝐹𝑓𝑋) ∘𝑟𝐹)
2417psrbagf 19365 . . . . . 6 ((𝐼𝑉𝑌𝐷) → 𝑌:𝐼⟶ℕ0)
258, 5, 24syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌:𝐼⟶ℕ0)
2622simpld 475 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝐹𝑓𝑋) ∈ 𝐷)
2717psrbagf 19365 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝑓𝑋) ∈ 𝐷) → (𝐹𝑓𝑋):𝐼⟶ℕ0)
288, 26, 27syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝐹𝑓𝑋):𝐼⟶ℕ0)
2917psrbagf 19365 . . . . . 6 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
308, 10, 29syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝐹:𝐼⟶ℕ0)
31 nn0re 11301 . . . . . . 7 (𝑢 ∈ ℕ0𝑢 ∈ ℝ)
32 nn0re 11301 . . . . . . 7 (𝑣 ∈ ℕ0𝑣 ∈ ℝ)
33 nn0re 11301 . . . . . . 7 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
34 letr 10131 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3531, 32, 33, 34syl3an 1368 . . . . . 6 ((𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3635adantl 482 . . . . 5 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ (𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0)) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
378, 25, 28, 30, 36caoftrn 6932 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → ((𝑌𝑟 ≤ (𝐹𝑓𝑋) ∧ (𝐹𝑓𝑋) ∘𝑟𝐹) → 𝑌𝑟𝐹))
386, 23, 37mp2and 715 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌𝑟𝐹)
39 breq1 4656 . . . 4 (𝑦 = 𝑌 → (𝑦𝑟𝐹𝑌𝑟𝐹))
4039, 13elrab2 3366 . . 3 (𝑌𝑆 ↔ (𝑌𝐷𝑌𝑟𝐹))
415, 38, 40sylanbrc 698 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌𝑆)
4219ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
4325ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
4430ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
45 nn0re 11301 . . . . . . . 8 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℝ)
46 nn0re 11301 . . . . . . . 8 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℝ)
47 nn0re 11301 . . . . . . . 8 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℝ)
48 leaddsub2 10505 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
49 leaddsub 10504 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5048, 49bitr3d 270 . . . . . . . 8 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5145, 46, 47, 50syl3an 1368 . . . . . . 7 (((𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝐹𝑧) ∈ ℕ0) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5242, 43, 44, 51syl3anc 1326 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5352ralbidva 2985 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
54 ovexd 6680 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑋𝑧)) ∈ V)
5525feqmptd 6249 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
56 ffn 6045 . . . . . . . 8 (𝐹:𝐼⟶ℕ0𝐹 Fn 𝐼)
5730, 56syl 17 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝐹 Fn 𝐼)
58 ffn 6045 . . . . . . . 8 (𝑋:𝐼⟶ℕ0𝑋 Fn 𝐼)
5919, 58syl 17 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋 Fn 𝐼)
60 inidm 3822 . . . . . . 7 (𝐼𝐼) = 𝐼
61 eqidd 2623 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) = (𝐹𝑧))
62 eqidd 2623 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) = (𝑋𝑧))
6357, 59, 8, 8, 60, 61, 62offval 6904 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝐹𝑓𝑋) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑋𝑧))))
648, 43, 54, 55, 63ofrfval2 6915 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑌𝑟 ≤ (𝐹𝑓𝑋) ↔ ∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
65 ovexd 6680 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑌𝑧)) ∈ V)
6619feqmptd 6249 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
67 ffn 6045 . . . . . . . 8 (𝑌:𝐼⟶ℕ0𝑌 Fn 𝐼)
6825, 67syl 17 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑌 Fn 𝐼)
69 eqidd 2623 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) = (𝑌𝑧))
7057, 68, 8, 8, 60, 61, 69offval 6904 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝐹𝑓𝑌) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑌𝑧))))
718, 42, 65, 66, 70ofrfval2 6915 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑋𝑟 ≤ (𝐹𝑓𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
7253, 64, 713bitr4d 300 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑌𝑟 ≤ (𝐹𝑓𝑋) ↔ 𝑋𝑟 ≤ (𝐹𝑓𝑌)))
736, 72mpbid 222 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋𝑟 ≤ (𝐹𝑓𝑌))
74 breq1 4656 . . . 4 (𝑥 = 𝑋 → (𝑥𝑟 ≤ (𝐹𝑓𝑌) ↔ 𝑋𝑟 ≤ (𝐹𝑓𝑌)))
7574elrab 3363 . . 3 (𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑌)} ↔ (𝑋𝐷𝑋𝑟 ≤ (𝐹𝑓𝑌)))
7616, 73, 75sylanbrc 698 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → 𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑌)})
7741, 76jca 554 1 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200   class class class wbr 4653  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  𝑚 cmap 7857  Fincfn 7955  cr 9935   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293
This theorem is referenced by:  gsumbagdiag  19376  psrass1lem  19377
  Copyright terms: Public domain W3C validator