Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenss Structured version   Visualization version   GIF version

Theorem caragenss 40718
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
caragenss.1 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenss (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)

Proof of Theorem caragenss
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . 3 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
21a1i 11 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂)
3 caragenss.1 . . . . 5 𝑆 = (CaraGen‘𝑂)
43a1i 11 . . . 4 (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂))
5 caragenval 40707 . . . 4 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
64, 5eqtrd 2656 . . 3 (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
7 omedm 40713 . . 3 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
86, 7sseq12d 3634 . 2 (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂))
92, 8mpbird 247 1 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436  dom cdm 5114  cfv 5888  (class class class)co 6650   +𝑒 cxad 11944  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-ome 40704  df-caragen 40706
This theorem is referenced by:  caragensspw  40723  caragenuni  40725  caragendifcl  40728  caratheodorylem1  40740  caratheodorylem2  40741  dmvon  40820  voncmpl  40835  vonmblss  40854
  Copyright terms: Public domain W3C validator