| Step | Hyp | Ref
| Expression |
| 1 | | omeunile.ct |
. 2
⊢ (𝜑 → 𝑌 ≼ ω) |
| 2 | | omeunile.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
| 3 | | omeunile.o |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| 4 | | omeunile.x |
. . . . . . . . 9
⊢ 𝑋 = ∪
dom 𝑂 |
| 5 | 3, 4 | unidmex 39217 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | | pwexg 4850 |
. . . . . . . 8
⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ V) |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
| 8 | | ssexg 4804 |
. . . . . . 7
⊢ ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V) |
| 9 | 2, 7, 8 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ V) |
| 10 | | elpwg 4166 |
. . . . . 6
⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫
𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
| 11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
| 12 | 2, 11 | mpbird 247 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋) |
| 13 | | omedm 40713 |
. . . . . . 7
⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) |
| 14 | 3, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 = 𝒫 ∪
dom 𝑂) |
| 15 | 4 | pweqi 4162 |
. . . . . . . 8
⊢ 𝒫
𝑋 = 𝒫 ∪ dom 𝑂 |
| 16 | 15 | eqcomi 2631 |
. . . . . . 7
⊢ 𝒫
∪ dom 𝑂 = 𝒫 𝑋 |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
| 18 | 14, 17 | eqtr2d 2657 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑋 = dom 𝑂) |
| 19 | 18 | pweqd 4163 |
. . . 4
⊢ (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂) |
| 20 | 12, 19 | eleqtrd 2703 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝒫 dom 𝑂) |
| 21 | | isome 40708 |
. . . . . 6
⊢ (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
| 22 | 3, 21 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))))) |
| 23 | 3, 22 | mpbid 222 |
. . . 4
⊢ (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑥 ∈ 𝒫 𝑦(𝑂‘𝑥) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦))))) |
| 24 | 23 | simprd 479 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))) |
| 25 | | breq1 4656 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 ≼ ω ↔ 𝑌 ≼ ω)) |
| 26 | | unieq 4444 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → ∪ 𝑦 = ∪
𝑌) |
| 27 | 26 | fveq2d 6195 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑂‘∪ 𝑦) = (𝑂‘∪ 𝑌)) |
| 28 | | reseq2 5391 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑂 ↾ 𝑦) = (𝑂 ↾ 𝑌)) |
| 29 | 28 | fveq2d 6195 |
. . . . . 6
⊢ (𝑦 = 𝑌 →
(Σ^‘(𝑂 ↾ 𝑦)) =
(Σ^‘(𝑂 ↾ 𝑌))) |
| 30 | 27, 29 | breq12d 4666 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)) ↔ (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
| 31 | 25, 30 | imbi12d 334 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦))) ↔ (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌))))) |
| 32 | 31 | rspcva 3307 |
. . 3
⊢ ((𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤
(Σ^‘(𝑂 ↾ 𝑦)))) → (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
| 33 | 20, 24, 32 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑌 ≼ ω → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)))) |
| 34 | 1, 33 | mpd 15 |
1
⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌))) |