![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensspw | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensspw.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensspw.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensspw.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragensspw | ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensspw.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragensspw.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
3 | 2 | caragenss 40718 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
5 | pwuni 4474 | . . . 4 ⊢ dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂) |
7 | 4, 6 | sstrd 3613 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂) |
8 | caragensspw.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
9 | 8 | pweqi 4162 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
10 | 9 | eqcomi 2631 | . . 3 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
12 | 7, 11 | sseqtrd 3641 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 dom cdm 5114 ‘cfv 5888 OutMeascome 40703 CaraGenccaragen 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-ome 40704 df-caragen 40706 |
This theorem is referenced by: caratheodorylem2 40741 |
Copyright terms: Public domain | W3C validator |