MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardiun Structured version   Visualization version   GIF version

Theorem cardiun 8808
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
cardiun (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem cardiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7140 . . . . . 6 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V)
2 vex 3203 . . . . . . . . 9 𝑦 ∈ V
3 eqeq1 2626 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (card‘𝐵) ↔ 𝑦 = (card‘𝐵)))
43rexbidv 3052 . . . . . . . . 9 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (card‘𝐵) ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵)))
52, 4elab 3350 . . . . . . . 8 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵))
6 cardidm 8785 . . . . . . . . . 10 (card‘(card‘𝐵)) = (card‘𝐵)
7 fveq2 6191 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → (card‘𝑦) = (card‘(card‘𝐵)))
8 id 22 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → 𝑦 = (card‘𝐵))
96, 7, 83eqtr4a 2682 . . . . . . . . 9 (𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
109rexlimivw 3029 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
115, 10sylbi 207 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} → (card‘𝑦) = 𝑦)
1211rgen 2922 . . . . . 6 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦
13 carduni 8807 . . . . . 6 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V → (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}))
141, 12, 13mpisyl 21 . . . . 5 (𝐴𝑉 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
15 fvex 6201 . . . . . . 7 (card‘𝐵) ∈ V
1615dfiun2 4554 . . . . . 6 𝑥𝐴 (card‘𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}
1716fveq2i 6194 . . . . 5 (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
1814, 17, 163eqtr4g 2681 . . . 4 (𝐴𝑉 → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
1918adantr 481 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
20 iuneq2 4537 . . . . 5 (∀𝑥𝐴 (card‘𝐵) = 𝐵 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2120adantl 482 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2221fveq2d 6195 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ 𝑥𝐴 𝐵))
2319, 22, 213eqtr3d 2664 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
2423ex 450 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200   cuni 4436   ciun 4520  cfv 5888  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  alephcard  8893
  Copyright terms: Public domain W3C validator