| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = ∅ →
(ℵ‘𝑥) =
(ℵ‘∅)) |
| 2 | 1 | fveq2d 6195 |
. . . 4
⊢ (𝑥 = ∅ →
(card‘(ℵ‘𝑥)) =
(card‘(ℵ‘∅))) |
| 3 | 2, 1 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = ∅ →
((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘∅))
= (ℵ‘∅))) |
| 4 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) |
| 5 | 4 | fveq2d 6195 |
. . . 4
⊢ (𝑥 = 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝑦))) |
| 6 | 5, 4 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦))) |
| 7 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) |
| 8 | 7 | fveq2d 6195 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘suc 𝑦))) |
| 9 | 8, 7 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) |
| 10 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) |
| 11 | 10 | fveq2d 6195 |
. . . 4
⊢ (𝑥 = 𝐴 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝐴))) |
| 12 | 11, 10 | eqeq12d 2637 |
. . 3
⊢ (𝑥 = 𝐴 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴))) |
| 13 | | cardom 8812 |
. . . 4
⊢
(card‘ω) = ω |
| 14 | | aleph0 8889 |
. . . . 5
⊢
(ℵ‘∅) = ω |
| 15 | 14 | fveq2i 6194 |
. . . 4
⊢
(card‘(ℵ‘∅)) =
(card‘ω) |
| 16 | 13, 15, 14 | 3eqtr4i 2654 |
. . 3
⊢
(card‘(ℵ‘∅)) =
(ℵ‘∅) |
| 17 | | harcard 8804 |
. . . . 5
⊢
(card‘(har‘(ℵ‘𝑦))) = (har‘(ℵ‘𝑦)) |
| 18 | | alephsuc 8891 |
. . . . . 6
⊢ (𝑦 ∈ On →
(ℵ‘suc 𝑦) =
(har‘(ℵ‘𝑦))) |
| 19 | 18 | fveq2d 6195 |
. . . . 5
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) =
(card‘(har‘(ℵ‘𝑦)))) |
| 20 | 17, 19, 18 | 3eqtr4a 2682 |
. . . 4
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)) |
| 21 | 20 | a1d 25 |
. . 3
⊢ (𝑦 ∈ On →
((card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) |
| 22 | | vex 3203 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 23 | | cardiun 8808 |
. . . . . . 7
⊢ (𝑥 ∈ V → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦))) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 25 | 24 | adantl 482 |
. . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 26 | | alephlim 8890 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 27 | 22, 26 | mpan 706 |
. . . . . . 7
⊢ (Lim
𝑥 →
(ℵ‘𝑥) =
∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 28 | 27 | adantr 481 |
. . . . . 6
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 29 | 28 | fveq2d 6195 |
. . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦))) |
| 30 | 25, 29, 28 | 3eqtr4d 2666 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥)) |
| 31 | 30 | ex 450 |
. . 3
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥))) |
| 32 | 3, 6, 9, 12, 16, 21, 31 | tfinds 7059 |
. 2
⊢ (𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 33 | | card0 8784 |
. . 3
⊢
(card‘∅) = ∅ |
| 34 | | alephfnon 8888 |
. . . . . . 7
⊢ ℵ
Fn On |
| 35 | | fndm 5990 |
. . . . . . 7
⊢ (ℵ
Fn On → dom ℵ = On) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . 6
⊢ dom
ℵ = On |
| 37 | 36 | eleq2i 2693 |
. . . . 5
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 38 | | ndmfv 6218 |
. . . . 5
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 39 | 37, 38 | sylnbir 321 |
. . . 4
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) =
∅) |
| 40 | 39 | fveq2d 6195 |
. . 3
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (card‘∅)) |
| 41 | 33, 40, 39 | 3eqtr4a 2682 |
. 2
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 42 | 32, 41 | pm2.61i 176 |
1
⊢
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴) |