MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephcard Structured version   Visualization version   GIF version

Theorem alephcard 8893
Description: Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephcard (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)

Proof of Theorem alephcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
21fveq2d 6195 . . . 4 (𝑥 = ∅ → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘∅)))
32, 1eqeq12d 2637 . . 3 (𝑥 = ∅ → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘∅)) = (ℵ‘∅)))
4 fveq2 6191 . . . . 5 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
54fveq2d 6195 . . . 4 (𝑥 = 𝑦 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘𝑦)))
65, 4eqeq12d 2637 . . 3 (𝑥 = 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
7 fveq2 6191 . . . . 5 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
87fveq2d 6195 . . . 4 (𝑥 = suc 𝑦 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘suc 𝑦)))
98, 7eqeq12d 2637 . . 3 (𝑥 = suc 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)))
10 fveq2 6191 . . . . 5 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
1110fveq2d 6195 . . . 4 (𝑥 = 𝐴 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘𝐴)))
1211, 10eqeq12d 2637 . . 3 (𝑥 = 𝐴 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)))
13 cardom 8812 . . . 4 (card‘ω) = ω
14 aleph0 8889 . . . . 5 (ℵ‘∅) = ω
1514fveq2i 6194 . . . 4 (card‘(ℵ‘∅)) = (card‘ω)
1613, 15, 143eqtr4i 2654 . . 3 (card‘(ℵ‘∅)) = (ℵ‘∅)
17 harcard 8804 . . . . 5 (card‘(har‘(ℵ‘𝑦))) = (har‘(ℵ‘𝑦))
18 alephsuc 8891 . . . . . 6 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
1918fveq2d 6195 . . . . 5 (𝑦 ∈ On → (card‘(ℵ‘suc 𝑦)) = (card‘(har‘(ℵ‘𝑦))))
2017, 19, 183eqtr4a 2682 . . . 4 (𝑦 ∈ On → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))
2120a1d 25 . . 3 (𝑦 ∈ On → ((card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)))
22 vex 3203 . . . . . . 7 𝑥 ∈ V
23 cardiun 8808 . . . . . . 7 (𝑥 ∈ V → (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦)))
2422, 23ax-mp 5 . . . . . 6 (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦))
2524adantl 482 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦))
26 alephlim 8890 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2722, 26mpan 706 . . . . . . 7 (Lim 𝑥 → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2827adantr 481 . . . . . 6 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2928fveq2d 6195 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘(ℵ‘𝑥)) = (card‘ 𝑦𝑥 (ℵ‘𝑦)))
3025, 29, 283eqtr4d 2666 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘(ℵ‘𝑥)) = (ℵ‘𝑥))
3130ex 450 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘𝑥)) = (ℵ‘𝑥)))
323, 6, 9, 12, 16, 21, 31tfinds 7059 . 2 (𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
33 card0 8784 . . 3 (card‘∅) = ∅
34 alephfnon 8888 . . . . . . 7 ℵ Fn On
35 fndm 5990 . . . . . . 7 (ℵ Fn On → dom ℵ = On)
3634, 35ax-mp 5 . . . . . 6 dom ℵ = On
3736eleq2i 2693 . . . . 5 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
38 ndmfv 6218 . . . . 5 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
3937, 38sylnbir 321 . . . 4 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
4039fveq2d 6195 . . 3 𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (card‘∅))
4133, 40, 393eqtr4a 2682 . 2 𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
4232, 41pm2.61i 176 1 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  c0 3915   ciun 4520  dom cdm 5114  Oncon0 5723  Lim wlim 5724  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065  harchar 8461  cardccrd 8761  cale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  alephnbtwn2  8895  alephord2  8899  alephsuc2  8903  alephislim  8906  alephsdom  8909  cardaleph  8912  cardalephex  8913  alephval3  8933  alephval2  9394  alephsuc3  9402  alephreg  9404  pwcfsdom  9405
  Copyright terms: Public domain W3C validator