MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufval Structured version   Visualization version   GIF version

Theorem caufval 23073
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
caufval (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Distinct variable groups:   𝑓,𝑘,𝑥,𝐷   𝑓,𝑋,𝑘,𝑥

Proof of Theorem caufval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-cau 23054 . . 3 Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)})
21a1i 11 . 2 (𝐷 ∈ (∞Met‘𝑋) → Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)}))
3 dmeq 5324 . . . . . 6 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5326 . . . . 5 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 22134 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
6 fdm 6051 . . . . . . . 8 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
75, 6syl 17 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
87dmeqd 5326 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
9 dmxpid 5345 . . . . . 6 dom (𝑋 × 𝑋) = 𝑋
108, 9syl6eq 2672 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
114, 10sylan9eqr 2678 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1211oveq1d 6665 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑pm ℂ) = (𝑋pm ℂ))
13 simpr 477 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1413fveq2d 6195 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (ball‘𝑑) = (ball‘𝐷))
1514oveqd 6667 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓𝑘)(ball‘𝑑)𝑥) = ((𝑓𝑘)(ball‘𝐷)𝑥))
1615feq3d 6032 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1716rexbidv 3052 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1817ralbidv 2986 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1912, 18rabeqbidv 3195 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)} = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
20 fvssunirn 6217 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 3599 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovex 6678 . . . 4 (𝑋pm ℂ) ∈ V
2322rabex 4813 . . 3 {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V
2423a1i 11 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V)
252, 19, 21, 24fvmptd 6288 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200   cuni 4436  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  *cxr 10073  cz 11377  cuz 11687  +crp 11832  ∞Metcxmt 19731  ballcbl 19733  Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-cau 23054
This theorem is referenced by:  iscau  23074  equivcau  23098
  Copyright terms: Public domain W3C validator