MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufval Structured version   Visualization version   Unicode version

Theorem caufval 23073
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
caufval  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) x ) } )
Distinct variable groups:    f, k, x, D    f, X, k, x

Proof of Theorem caufval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 df-cau 23054 . . 3  |-  Cau  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( dom  dom  d  ^pm  CC )  | 
A. x  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  d
) x ) } )
21a1i 11 . 2  |-  ( D  e.  ( *Met `  X )  ->  Cau  =  ( d  e. 
U. ran  *Met  |->  { f  e.  ( dom  dom  d  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  d
) x ) } ) )
3 dmeq 5324 . . . . . 6  |-  ( d  =  D  ->  dom  d  =  dom  D )
43dmeqd 5326 . . . . 5  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
5 xmetf 22134 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
6 fdm 6051 . . . . . . . 8  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
75, 6syl 17 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  dom  D  =  ( X  X.  X ) )
87dmeqd 5326 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  dom  dom 
D  =  dom  ( X  X.  X ) )
9 dmxpid 5345 . . . . . 6  |-  dom  ( X  X.  X )  =  X
108, 9syl6eq 2672 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  dom  dom 
D  =  X )
114, 10sylan9eqr 2678 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  dom  dom  d  =  X )
1211oveq1d 6665 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( dom  dom  d  ^pm  CC )  =  ( X  ^pm  CC ) )
13 simpr 477 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  d  =  D )
1413fveq2d 6195 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( ball `  d )  =  (
ball `  D )
)
1514oveqd 6667 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( (
f `  k )
( ball `  d )
x )  =  ( ( f `  k
) ( ball `  D
) x ) )
1615feq3d 6032 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  d
) x )  <->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) ) )
1716rexbidv 3052 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  d
) x )  <->  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) ) )
1817ralbidv 2986 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  d
) x )  <->  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) ) )
1912, 18rabeqbidv 3195 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  d  =  D )  ->  { f  e.  ( dom  dom  d  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  d
) x ) }  =  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) } )
20 fvssunirn 6217 . . 3  |-  ( *Met `  X ) 
C_  U. ran  *Met
2120sseli 3599 . 2  |-  ( D  e.  ( *Met `  X )  ->  D  e.  U. ran  *Met )
22 ovex 6678 . . . 4  |-  ( X 
^pm  CC )  e.  _V
2322rabex 4813 . . 3  |-  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) }  e.  _V
2423a1i 11 . 2  |-  ( D  e.  ( *Met `  X )  ->  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) }  e.  _V )
252, 19, 21, 24fvmptd 6288 1  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RR*cxr 10073   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-cau 23054
This theorem is referenced by:  iscau  23074  equivcau  23098
  Copyright terms: Public domain W3C validator