![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemfnid | Structured version Visualization version GIF version |
Description: cdlemf 35851 with additional constraint of non-identity. (Contributed by NM, 20-Jun-2013.) |
Ref | Expression |
---|---|
cdlemfnid.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemfnid.l | ⊢ ≤ = (le‘𝐾) |
cdlemfnid.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemfnid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemfnid.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemfnid.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemfnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemfnid.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemfnid.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemfnid.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdlemfnid.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdlemfnid.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | cdlemf 35851 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈) |
7 | simp3 1063 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) = 𝑈) | |
8 | simp1rl 1126 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑈 ∈ 𝐴) | |
9 | 7, 8 | eqeltrd 2701 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑅‘𝑓) ∈ 𝐴) |
10 | simp1l 1085 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | simp2 1062 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ∈ 𝑇) | |
12 | cdlemfnid.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | 12, 2, 3, 4, 5 | trlnidatb 35464 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
14 | 10, 11, 13 | syl2anc 693 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → (𝑓 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝑓) ∈ 𝐴)) |
15 | 9, 14 | mpbird 247 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → 𝑓 ≠ ( I ↾ 𝐵)) |
16 | 7, 15 | jca 554 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) = 𝑈) → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
17 | 16 | 3expia 1267 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) ∧ 𝑓 ∈ 𝑇) → ((𝑅‘𝑓) = 𝑈 → ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
18 | 17 | reximdva 3017 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → (∃𝑓 ∈ 𝑇 (𝑅‘𝑓) = 𝑈 → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵)))) |
19 | 6, 18 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑈 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 class class class wbr 4653 I cid 5023 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 lecple 15948 Atomscatm 34550 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 trLctrl 35445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
This theorem is referenced by: cdlemftr3 35853 cdlemj3 36111 |
Copyright terms: Public domain | W3C validator |