![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk56w | Structured version Visualization version GIF version |
Description: Use a fixed element to eliminate 𝑃 in cdlemk56 36259. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
cdlemk6.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk6.j | ⊢ ∨ = (join‘𝐾) |
cdlemk6.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk6.o | ⊢ ⊥ = (oc‘𝐾) |
cdlemk6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk6.p | ⊢ 𝑃 = ( ⊥ ‘𝑊) |
cdlemk6.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk6.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
cdlemk6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
cdlemk6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemk56w | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2l 1087 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝐹 ∈ 𝑇) | |
3 | simp2r 1088 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑁 ∈ 𝑇) | |
4 | simp3 1063 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
5 | eqid 2622 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | cdlemk6.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemk6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemk6.p | . . . . . 6 ⊢ 𝑃 = ( ⊥ ‘𝑊) | |
9 | cdlemk6.o | . . . . . . 7 ⊢ ⊥ = (oc‘𝐾) | |
10 | 9 | fveq1i 6192 | . . . . . 6 ⊢ ( ⊥ ‘𝑊) = ((oc‘𝐾)‘𝑊) |
11 | 8, 10 | eqtri 2644 | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
12 | 5, 6, 7, 11 | lhpocnel2 35305 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
13 | 12 | 3ad2ant1 1082 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
14 | cdlemk6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
15 | cdlemk6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
16 | cdlemk6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
17 | cdlemk6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | cdlemk6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
19 | cdlemk6.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
20 | cdlemk6.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
21 | cdlemk6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
22 | cdlemk6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
23 | cdlemk6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
24 | 14, 5, 15, 16, 6, 7, 17, 18, 19, 20, 21, 22, 23 | cdlemk56 36259 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → 𝑈 ∈ 𝐸) |
25 | 1, 2, 3, 4, 13, 24 | syl311anc 1340 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → 𝑈 ∈ 𝐸) |
26 | 14, 15, 16, 9, 6, 7, 17, 18, 8, 19, 20, 21, 22 | cdlemk19w 36260 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
27 | 25, 26 | jca 554 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘𝐹) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 I cid 5023 ◡ccnv 5113 ↾ cres 5116 ∘ ccom 5118 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 lecple 15948 occoc 15949 joincjn 16944 meetcmee 16945 Atomscatm 34550 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 trLctrl 35445 TEndoctendo 36040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 |
This theorem is referenced by: cdlemk 36262 cdleml6 36269 |
Copyright terms: Public domain | W3C validator |