Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuu Structured version   Visualization version   GIF version

Theorem cdlemkuu 36183
Description: Convert between function and operation forms of 𝑌. TODO: Use operation form everywhere. (Contributed by NM, 6-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
cdlemk3.o2 𝑄 = (𝑆𝐷)
cdlemk3.u2 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuu ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝐷,𝑒,𝑓,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑄,𝑑,𝑒   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑗,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑃(𝑗)   𝑄(𝑓,𝑖,𝑗)   𝑅(𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑇(𝑗)   𝐹(𝑒,𝑗,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝐾(𝑒,𝑓,𝑗,𝑑)   (𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝑁(𝑒,𝑗,𝑑)   𝑊(𝑗)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑍(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemkuu
StepHypRef Expression
1 fveq2 6191 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑆𝑑) = (𝑆𝐷))
2 cdlemk3.o2 . . . . . . . . 9 𝑄 = (𝑆𝐷)
31, 2syl6eqr 2674 . . . . . . . 8 (𝑑 = 𝐷 → (𝑆𝑑) = 𝑄)
43fveq1d 6193 . . . . . . 7 (𝑑 = 𝐷 → ((𝑆𝑑)‘𝑃) = (𝑄𝑃))
5 cnveq 5296 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
65coeq2d 5284 . . . . . . . 8 (𝑑 = 𝐷 → (𝑒𝑑) = (𝑒𝐷))
76fveq2d 6195 . . . . . . 7 (𝑑 = 𝐷 → (𝑅‘(𝑒𝑑)) = (𝑅‘(𝑒𝐷)))
84, 7oveq12d 6668 . . . . . 6 (𝑑 = 𝐷 → (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))) = ((𝑄𝑃) (𝑅‘(𝑒𝐷))))
98oveq2d 6666 . . . . 5 (𝑑 = 𝐷 → ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))))
109eqeq2d 2632 . . . 4 (𝑑 = 𝐷 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
1110riotabidv 6613 . . 3 (𝑑 = 𝐷 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
12 fveq2 6191 . . . . . . 7 (𝑒 = 𝐺 → (𝑅𝑒) = (𝑅𝐺))
1312oveq2d 6666 . . . . . 6 (𝑒 = 𝐺 → (𝑃 (𝑅𝑒)) = (𝑃 (𝑅𝐺)))
14 coeq1 5279 . . . . . . . 8 (𝑒 = 𝐺 → (𝑒𝐷) = (𝐺𝐷))
1514fveq2d 6195 . . . . . . 7 (𝑒 = 𝐺 → (𝑅‘(𝑒𝐷)) = (𝑅‘(𝐺𝐷)))
1615oveq2d 6666 . . . . . 6 (𝑒 = 𝐺 → ((𝑄𝑃) (𝑅‘(𝑒𝐷))) = ((𝑄𝑃) (𝑅‘(𝐺𝐷))))
1713, 16oveq12d 6668 . . . . 5 (𝑒 = 𝐺 → ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷)))))
1817eqeq2d 2632 . . . 4 (𝑒 = 𝐺 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
1918riotabidv 6613 . . 3 (𝑒 = 𝐺 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
20 cdlemk3.u1 . . 3 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
21 riotaex 6615 . . 3 (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))) ∈ V
2211, 19, 20, 21ovmpt2 6796 . 2 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
23 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
24 cdlemk3.l . . . 4 = (le‘𝐾)
25 cdlemk3.j . . . 4 = (join‘𝐾)
26 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
27 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
28 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
29 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
30 cdlemk3.m . . . 4 = (meet‘𝐾)
31 cdlemk3.u2 . . . 4 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
3223, 24, 25, 26, 27, 28, 29, 30, 31cdlemksv 36132 . . 3 (𝐺𝑇 → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3332adantl 482 . 2 ((𝐷𝑇𝐺𝑇) → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3422, 33eqtr4d 2659 1 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  ccnv 5113  ccom 5118  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Atomscatm 34550  LHypclh 35270  LTrncltrn 35387  trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  cdlemk31  36184  cdlemkuel-3  36186  cdlemkuv2-3N  36187  cdlemk18-3N  36188  cdlemk22-3  36189  cdlemkyu  36215
  Copyright terms: Public domain W3C validator