| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuu | Structured version Visualization version Unicode version | ||
| Description: Convert between function
and operation forms of |
| Ref | Expression |
|---|---|
| cdlemk3.b |
|
| cdlemk3.l |
|
| cdlemk3.j |
|
| cdlemk3.m |
|
| cdlemk3.a |
|
| cdlemk3.h |
|
| cdlemk3.t |
|
| cdlemk3.r |
|
| cdlemk3.s |
|
| cdlemk3.u1 |
|
| cdlemk3.o2 |
|
| cdlemk3.u2 |
|
| Ref | Expression |
|---|---|
| cdlemkuu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . . . . 9
| |
| 2 | cdlemk3.o2 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . . . . 8
|
| 4 | 3 | fveq1d 6193 |
. . . . . . 7
|
| 5 | cnveq 5296 |
. . . . . . . . 9
| |
| 6 | 5 | coeq2d 5284 |
. . . . . . . 8
|
| 7 | 6 | fveq2d 6195 |
. . . . . . 7
|
| 8 | 4, 7 | oveq12d 6668 |
. . . . . 6
|
| 9 | 8 | oveq2d 6666 |
. . . . 5
|
| 10 | 9 | eqeq2d 2632 |
. . . 4
|
| 11 | 10 | riotabidv 6613 |
. . 3
|
| 12 | fveq2 6191 |
. . . . . . 7
| |
| 13 | 12 | oveq2d 6666 |
. . . . . 6
|
| 14 | coeq1 5279 |
. . . . . . . 8
| |
| 15 | 14 | fveq2d 6195 |
. . . . . . 7
|
| 16 | 15 | oveq2d 6666 |
. . . . . 6
|
| 17 | 13, 16 | oveq12d 6668 |
. . . . 5
|
| 18 | 17 | eqeq2d 2632 |
. . . 4
|
| 19 | 18 | riotabidv 6613 |
. . 3
|
| 20 | cdlemk3.u1 |
. . 3
| |
| 21 | riotaex 6615 |
. . 3
| |
| 22 | 11, 19, 20, 21 | ovmpt2 6796 |
. 2
|
| 23 | cdlemk3.b |
. . . 4
| |
| 24 | cdlemk3.l |
. . . 4
| |
| 25 | cdlemk3.j |
. . . 4
| |
| 26 | cdlemk3.a |
. . . 4
| |
| 27 | cdlemk3.h |
. . . 4
| |
| 28 | cdlemk3.t |
. . . 4
| |
| 29 | cdlemk3.r |
. . . 4
| |
| 30 | cdlemk3.m |
. . . 4
| |
| 31 | cdlemk3.u2 |
. . . 4
| |
| 32 | 23, 24, 25, 26, 27, 28, 29, 30, 31 | cdlemksv 36132 |
. . 3
|
| 33 | 32 | adantl 482 |
. 2
|
| 34 | 22, 33 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: cdlemk31 36184 cdlemkuel-3 36186 cdlemkuv2-3N 36187 cdlemk18-3N 36188 cdlemk22-3 36189 cdlemkyu 36215 |
| Copyright terms: Public domain | W3C validator |