Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneifv4 Structured version   Visualization version   GIF version

Theorem clsneifv4 38409
Description: Value of the the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneifv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneifv4 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝐵,𝑛,𝑜,𝑝,𝑥   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚,𝑥   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚,𝑥   𝑆,𝑜   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑥)   𝑃(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑥,𝑚)   𝐻(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑥,𝑚)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneifv4
StepHypRef Expression
1 dfin5 3582 . 2 (𝐵 ∩ (𝐾𝑆)) = {𝑥𝐵𝑥 ∈ (𝐾𝑆)}
2 clsnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 clsnei.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
4 clsnei.d . . . . . . 7 𝐷 = (𝑃𝐵)
5 clsnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
6 clsnei.h . . . . . . 7 𝐻 = (𝐹𝐷)
7 clsnei.r . . . . . . 7 (𝜑𝐾𝐻𝑁)
82, 3, 4, 5, 6, 7clsneikex 38404 . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
9 elmapi 7879 . . . . . 6 (𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
108, 9syl 17 . . . . 5 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
11 clsneifv.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
1210, 11ffvelrnd 6360 . . . 4 (𝜑 → (𝐾𝑆) ∈ 𝒫 𝐵)
1312elpwid 4170 . . 3 (𝜑 → (𝐾𝑆) ⊆ 𝐵)
14 sseqin2 3817 . . 3 ((𝐾𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
1513, 14sylib 208 . 2 (𝜑 → (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
167adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝐾𝐻𝑁)
17 simpr 477 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
1811adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝑆 ∈ 𝒫 𝐵)
192, 3, 4, 5, 6, 16, 17, 18clsneiel1 38406 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑥)))
2019rabbidva 3188 . 2 (𝜑 → {𝑥𝐵𝑥 ∈ (𝐾𝑆)} = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
211, 15, 203eqtr3a 2680 1 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator