Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfmptss Structured version   Visualization version   GIF version

Theorem cncfmptss 39819
Description: A continuous complex function restricted to a subset is continuous, using "map to" notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
cncfmptss.1 𝑥𝐹
cncfmptss.2 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfmptss.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
cncfmptss (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem cncfmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmptss.3 . . . 4 (𝜑𝐶𝐴)
21resmptd 5452 . . 3 (𝜑 → ((𝑦𝐴 ↦ (𝐹𝑦)) ↾ 𝐶) = (𝑦𝐶 ↦ (𝐹𝑦)))
3 cncfmptss.2 . . . . . 6 (𝜑𝐹 ∈ (𝐴cn𝐵))
4 cncff 22696 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
53, 4syl 17 . . . . 5 (𝜑𝐹:𝐴𝐵)
65feqmptd 6249 . . . 4 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
76reseq1d 5395 . . 3 (𝜑 → (𝐹𝐶) = ((𝑦𝐴 ↦ (𝐹𝑦)) ↾ 𝐶))
8 nfcv 2764 . . . . . 6 𝑦𝐹
9 nfcv 2764 . . . . . 6 𝑦𝑥
108, 9nffv 6198 . . . . 5 𝑦(𝐹𝑥)
11 cncfmptss.1 . . . . . 6 𝑥𝐹
12 nfcv 2764 . . . . . 6 𝑥𝑦
1311, 12nffv 6198 . . . . 5 𝑥(𝐹𝑦)
14 fveq2 6191 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1510, 13, 14cbvmpt 4749 . . . 4 (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑦𝐶 ↦ (𝐹𝑦))
1615a1i 11 . . 3 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑦𝐶 ↦ (𝐹𝑦)))
172, 7, 163eqtr4rd 2667 . 2 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
18 rescncf 22700 . . 3 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
191, 3, 18sylc 65 . 2 (𝜑 → (𝐹𝐶) ∈ (𝐶cn𝐵))
2017, 19eqeltrd 2701 1 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wnfc 2751  wss 3574  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cncf 22681
This theorem is referenced by:  cncfmptssg  40083  itgsin0pilem1  40165  ibliccsinexp  40166  itgsinexplem1  40169  itgsinexp  40170
  Copyright terms: Public domain W3C validator