Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfmptss Structured version   Visualization version   Unicode version

Theorem cncfmptss 39819
Description: A continuous complex function restricted to a subset is continuous, using "map to" notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
cncfmptss.1  |-  F/_ x F
cncfmptss.2  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfmptss.3  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
cncfmptss  |-  ( ph  ->  ( x  e.  C  |->  ( F `  x
) )  e.  ( C -cn-> B ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    F( x)

Proof of Theorem cncfmptss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfmptss.3 . . . 4  |-  ( ph  ->  C  C_  A )
21resmptd 5452 . . 3  |-  ( ph  ->  ( ( y  e.  A  |->  ( F `  y ) )  |`  C )  =  ( y  e.  C  |->  ( F `  y ) ) )
3 cncfmptss.2 . . . . . 6  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
4 cncff 22696 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
53, 4syl 17 . . . . 5  |-  ( ph  ->  F : A --> B )
65feqmptd 6249 . . . 4  |-  ( ph  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
76reseq1d 5395 . . 3  |-  ( ph  ->  ( F  |`  C )  =  ( ( y  e.  A  |->  ( F `
 y ) )  |`  C ) )
8 nfcv 2764 . . . . . 6  |-  F/_ y F
9 nfcv 2764 . . . . . 6  |-  F/_ y
x
108, 9nffv 6198 . . . . 5  |-  F/_ y
( F `  x
)
11 cncfmptss.1 . . . . . 6  |-  F/_ x F
12 nfcv 2764 . . . . . 6  |-  F/_ x
y
1311, 12nffv 6198 . . . . 5  |-  F/_ x
( F `  y
)
14 fveq2 6191 . . . . 5  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1510, 13, 14cbvmpt 4749 . . . 4  |-  ( x  e.  C  |->  ( F `
 x ) )  =  ( y  e.  C  |->  ( F `  y ) )
1615a1i 11 . . 3  |-  ( ph  ->  ( x  e.  C  |->  ( F `  x
) )  =  ( y  e.  C  |->  ( F `  y ) ) )
172, 7, 163eqtr4rd 2667 . 2  |-  ( ph  ->  ( x  e.  C  |->  ( F `  x
) )  =  ( F  |`  C )
)
18 rescncf 22700 . . 3  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
191, 3, 18sylc 65 . 2  |-  ( ph  ->  ( F  |`  C )  e.  ( C -cn-> B ) )
2017, 19eqeltrd 2701 1  |-  ( ph  ->  ( x  e.  C  |->  ( F `  x
) )  e.  ( C -cn-> B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751    C_ wss 3574    |-> cmpt 4729    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cncf 22681
This theorem is referenced by:  cncfmptssg  40083  itgsin0pilem1  40165  ibliccsinexp  40166  itgsinexplem1  40169  itgsinexp  40170
  Copyright terms: Public domain W3C validator