Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   GIF version

Theorem itgsinexplem1 40169
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
itgsinexplem1.2 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
itgsinexplem1.3 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
itgsinexplem1.4 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
itgsinexplem1.5 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
itgsinexplem1.6 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
itgsinexplem1.7 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
itgsinexplem1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐿(𝑥)   𝑀(𝑥)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 11130 . . . . 5 (0 − 0) = 0
21oveq1i 6660 . . . 4 ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥) = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
3 0re 10040 . . . . . 6 0 ∈ ℝ
43a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ)
5 pire 24210 . . . . . 6 π ∈ ℝ
65a1i 11 . . . . 5 (𝜑 → π ∈ ℝ)
7 pipos 24212 . . . . . . 7 0 < π
83, 5, 7ltleii 10160 . . . . . 6 0 ≤ π
98a1i 11 . . . . 5 (𝜑 → 0 ≤ π)
103, 5pm3.2i 471 . . . . . . . . . . . . 13 (0 ∈ ℝ ∧ π ∈ ℝ)
11 iccssre 12255 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
13 ax-resscn 9993 . . . . . . . . . . . 12 ℝ ⊆ ℂ
1412, 13sstri 3612 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
1514sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
1715sincld 14860 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
1817adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
19 itgsinexplem1.7 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2019nnnn0d 11351 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2120adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
2218, 21expcld 13008 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
23 itgsinexplem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2423fvmpt2 6291 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2516, 22, 24syl2anc 693 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝐹𝑥) = ((sin‘𝑥)↑𝑁))
2625eqcomd 2628 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = (𝐹𝑥))
2726mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)))
28 nfmpt1 4747 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
2923, 28nfcxfr 2762 . . . . . . 7 𝑥𝐹
30 nfcv 2764 . . . . . . . . 9 𝑥sin
31 sincn 24198 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3330, 32, 20expcnfg 39823 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
3423, 33syl5eqel 2705 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
3514a1i 11 . . . . . . 7 (𝜑 → (0[,]π) ⊆ ℂ)
3629, 34, 35cncfmptss 39819 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐹𝑥)) ∈ ((0[,]π)–cn→ℂ))
3727, 36eqeltrd 2701 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
3815coscld 14861 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
3938negcld 10379 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
40 itgsinexplem1.2 . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4140fvmpt2 6291 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → (𝐺𝑥) = -(cos‘𝑥))
4215, 39, 41syl2anc 693 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → (𝐺𝑥) = -(cos‘𝑥))
4342eqcomd 2628 . . . . . . . 8 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = (𝐺𝑥))
4443adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) = (𝐺𝑥))
4544mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)))
46 nfmpt1 4747 . . . . . . . 8 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
4740, 46nfcxfr 2762 . . . . . . 7 𝑥𝐺
48 coscn 24199 . . . . . . . . 9 cos ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . . . . 8 (𝜑 → cos ∈ (ℂ–cn→ℂ))
5040negfcncf 22722 . . . . . . . 8 (cos ∈ (ℂ–cn→ℂ) → 𝐺 ∈ (ℂ–cn→ℂ))
5149, 50syl 17 . . . . . . 7 (𝜑𝐺 ∈ (ℂ–cn→ℂ))
5247, 51, 35cncfmptss 39819 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐺𝑥)) ∈ ((0[,]π)–cn→ℂ))
5345, 52eqeltrd 2701 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
54 itgsinexplem1.3 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
55 ssid 3624 . . . . . . . . . . 11 ℂ ⊆ ℂ
5655a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5719nncnd 11036 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
5856, 57, 56constcncfg 40084 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑁) ∈ (ℂ–cn→ℂ))
59 nnm1nn0 11334 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6019, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6130, 32, 60expcnfg 39823 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
6258, 61mulcncf 23215 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
63 cosf 14855 . . . . . . . . . . 11 cos:ℂ⟶ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → cos:ℂ⟶ℂ)
6564feqmptd 6249 . . . . . . . . 9 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
6665, 48syl6eqelr 2710 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
6762, 66mulcncf 23215 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ (ℂ–cn→ℂ))
6854, 67syl5eqel 2705 . . . . . 6 (𝜑𝐻 ∈ (ℂ–cn→ℂ))
69 ioosscn 39716 . . . . . . 7 (0(,)π) ⊆ ℂ
7069a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ℂ)
7157adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℂ)
7269sseli 3599 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
7372sincld 14860 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
7473adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
7560adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 1) ∈ ℕ0)
7674, 75expcld 13008 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
7771, 76mulcld 10060 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
7872coscld 14861 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ ℂ)
7978adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘𝑥) ∈ ℂ)
8077, 79mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
8154, 68, 70, 56, 80cncfmptssg 40083 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ∈ ((0(,)π)–cn→ℂ))
8230, 32, 70cncfmptss 39819 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
83 ioossicc 12259 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
8483a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
85 ioombl 23333 . . . . . . 7 (0(,)π) ∈ dom vol
8685a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
8722, 18mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ)
88 itgsinexplem1.4 . . . . . . . . . . . 12 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
8988fvmpt2 6291 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) ∈ ℂ) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9016, 87, 89syl2anc 693 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝐼𝑥) = (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9190eqcomd 2628 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (((sin‘𝑥)↑𝑁) · (sin‘𝑥)) = (𝐼𝑥))
9291mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) = (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)))
93 nfmpt1 4747 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥)))
9488, 93nfcxfr 2762 . . . . . . . . 9 𝑥𝐼
95 sinf 14854 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
9695a1i 11 . . . . . . . . . . . . 13 (𝜑 → sin:ℂ⟶ℂ)
9796feqmptd 6249 . . . . . . . . . . . 12 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
9897, 31syl6eqelr 2710 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (sin‘𝑥)) ∈ (ℂ–cn→ℂ))
9933, 98mulcncf 23215 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ (ℂ–cn→ℂ))
10088, 99syl5eqel 2705 . . . . . . . . 9 (𝜑𝐼 ∈ (ℂ–cn→ℂ))
10194, 100, 35cncfmptss 39819 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝐼𝑥)) ∈ ((0[,]π)–cn→ℂ))
10292, 101eqeltrd 2701 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
103 cniccibl 23607 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
1044, 6, 102, 103syl3anc 1326 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10584, 86, 87, 104iblss 23571 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) ∈ 𝐿1)
10657adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℂ)
10760adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 1) ∈ ℕ0)
10818, 107expcld 13008 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
109106, 108mulcld 10060 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
11038adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
111109, 110mulcld 10060 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
11239adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
113111, 112mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) ∈ ℂ)
114 itgsinexplem1.5 . . . . . . . 8 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
115 eqid 2622 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
116115negfcncf 22722 . . . . . . . . . . 11 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11749, 116syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
11867, 117mulcncf 23215 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ (ℂ–cn→ℂ))
119114, 118syl5eqel 2705 . . . . . . . 8 (𝜑𝐿 ∈ (ℂ–cn→ℂ))
120114, 119, 35, 56, 113cncfmptssg 40083 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ))
121 cniccibl 23607 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
1224, 6, 120, 121syl3anc 1326 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
12384, 86, 113, 122iblss 23571 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) ∈ 𝐿1)
124 reelprrecn 10028 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
125124a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
126 recn 10026 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
127126sincld 14860 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
128127adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
12920adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℕ0)
130128, 129expcld 13008 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
13157adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
13260adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑁 − 1) ∈ ℕ0)
133128, 132expcld 13008 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((sin‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
134131, 133mulcld 10060 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
135126coscld 14861 . . . . . . . 8 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
136135adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
137134, 136mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ)
138 sincl 14856 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
139138adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
14020adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
141139, 140expcld 13008 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
142141, 23fmptd 6385 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
143126adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
144 elex 3212 . . . . . . . . . . . . . . 15 (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ ℂ → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
145137, 144syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V)
146 rabid 3116 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V} ↔ (𝑥 ∈ ℂ ∧ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V))
147143, 145, 146sylanbrc 698 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V})
14854dmmpt 5630 . . . . . . . . . . . . 13 dom 𝐻 = {𝑥 ∈ ℂ ∣ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) ∈ V}
149147, 148syl6eleqr 2712 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ dom 𝐻)
150149ex 450 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
151150alrimiv 1855 . . . . . . . . . 10 (𝜑 → ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
152 nfcv 2764 . . . . . . . . . . 11 𝑥
153 nfmpt1 4747 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
15454, 153nfcxfr 2762 . . . . . . . . . . . 12 𝑥𝐻
155154nfdm 5367 . . . . . . . . . . 11 𝑥dom 𝐻
156152, 155dfss2f 3594 . . . . . . . . . 10 (ℝ ⊆ dom 𝐻 ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ dom 𝐻))
157151, 156sylibr 224 . . . . . . . . 9 (𝜑 → ℝ ⊆ dom 𝐻)
15819dvsinexp 40125 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
15923oveq2i 6661 . . . . . . . . . . 11 (ℂ D 𝐹) = (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)))
160158, 159, 543eqtr4g 2681 . . . . . . . . . 10 (𝜑 → (ℂ D 𝐹) = 𝐻)
161160dmeqd 5326 . . . . . . . . 9 (𝜑 → dom (ℂ D 𝐹) = dom 𝐻)
162157, 161sseqtr4d 3642 . . . . . . . 8 (𝜑 → ℝ ⊆ dom (ℂ D 𝐹))
163 dvres3 23677 . . . . . . . 8 (((ℝ ∈ {ℝ, ℂ} ∧ 𝐹:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D 𝐹))) → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
164125, 142, 56, 162, 163syl22anc 1327 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = ((ℂ D 𝐹) ↾ ℝ))
16523reseq1i 5392 . . . . . . . . . 10 (𝐹 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ)
166 resmpt 5449 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
16713, 166ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
168165, 167eqtri 2644 . . . . . . . . 9 (𝐹 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))
169168oveq2i 6661 . . . . . . . 8 (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁)))
170169a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))))
171160reseq1d 5395 . . . . . . . 8 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝐻 ↾ ℝ))
17254reseq1i 5392 . . . . . . . . 9 (𝐻 ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ)
173 resmpt 5449 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17413, 173ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
175172, 174eqtri 2644 . . . . . . . 8 (𝐻 ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))
176171, 175syl6eq 2672 . . . . . . 7 (𝜑 → ((ℂ D 𝐹) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
177164, 170, 1763eqtr3d 2664 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℝ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
17812a1i 11 . . . . . 6 (𝜑 → (0[,]π) ⊆ ℝ)
179 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
180179tgioo2 22606 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
18110a1i 11 . . . . . . 7 (𝜑 → (0 ∈ ℝ ∧ π ∈ ℝ))
182 iccntr 22624 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
183181, 182syl 17 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
184125, 130, 137, 177, 178, 180, 179, 183dvmptres2 23725 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ (0(,)π) ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
185135negcld 10379 . . . . . . 7 (𝑥 ∈ ℝ → -(cos‘𝑥) ∈ ℂ)
186185adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
187127negcld 10379 . . . . . . . . 9 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
188187adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
189 dvcosre 40126 . . . . . . . . 9 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
190189a1i 11 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
191125, 136, 188, 190dvmptneg 23729 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
192127negnegd 10383 . . . . . . . . 9 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
193192adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → --(sin‘𝑥) = (sin‘𝑥))
194193mpteq2dva 4744 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
195191, 194eqtrd 2656 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
196125, 186, 128, 195, 178, 180, 179, 183dvmptres2 23725 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
197 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 0 → (sin‘𝑥) = (sin‘0))
198 sin0 14879 . . . . . . . . . . 11 (sin‘0) = 0
199197, 198syl6eq 2672 . . . . . . . . . 10 (𝑥 = 0 → (sin‘𝑥) = 0)
200199oveq1d 6665 . . . . . . . . 9 (𝑥 = 0 → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
201200adantl 482 . . . . . . . 8 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
20219adantr 481 . . . . . . . . 9 ((𝜑𝑥 = 0) → 𝑁 ∈ ℕ)
2032020expd 13024 . . . . . . . 8 ((𝜑𝑥 = 0) → (0↑𝑁) = 0)
204201, 203eqtrd 2656 . . . . . . 7 ((𝜑𝑥 = 0) → ((sin‘𝑥)↑𝑁) = 0)
205204oveq1d 6665 . . . . . 6 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
206 id 22 . . . . . . . . . 10 (𝑥 = 0 → 𝑥 = 0)
207 0cn 10032 . . . . . . . . . 10 0 ∈ ℂ
208206, 207syl6eqel 2709 . . . . . . . . 9 (𝑥 = 0 → 𝑥 ∈ ℂ)
209 coscl 14857 . . . . . . . . . 10 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
210209negcld 10379 . . . . . . . . 9 (𝑥 ∈ ℂ → -(cos‘𝑥) ∈ ℂ)
211208, 210syl 17 . . . . . . . 8 (𝑥 = 0 → -(cos‘𝑥) ∈ ℂ)
212211adantl 482 . . . . . . 7 ((𝜑𝑥 = 0) → -(cos‘𝑥) ∈ ℂ)
213212mul02d 10234 . . . . . 6 ((𝜑𝑥 = 0) → (0 · -(cos‘𝑥)) = 0)
214205, 213eqtrd 2656 . . . . 5 ((𝜑𝑥 = 0) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
215 fveq2 6191 . . . . . . . . . . 11 (𝑥 = π → (sin‘𝑥) = (sin‘π))
216 sinpi 24209 . . . . . . . . . . 11 (sin‘π) = 0
217215, 216syl6eq 2672 . . . . . . . . . 10 (𝑥 = π → (sin‘𝑥) = 0)
218217oveq1d 6665 . . . . . . . . 9 (𝑥 = π → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
219218adantl 482 . . . . . . . 8 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = (0↑𝑁))
22019adantr 481 . . . . . . . . 9 ((𝜑𝑥 = π) → 𝑁 ∈ ℕ)
2212200expd 13024 . . . . . . . 8 ((𝜑𝑥 = π) → (0↑𝑁) = 0)
222219, 221eqtrd 2656 . . . . . . 7 ((𝜑𝑥 = π) → ((sin‘𝑥)↑𝑁) = 0)
223222oveq1d 6665 . . . . . 6 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = (0 · -(cos‘𝑥)))
224 id 22 . . . . . . . . . . 11 (𝑥 = π → 𝑥 = π)
225 picn 24211 . . . . . . . . . . 11 π ∈ ℂ
226224, 225syl6eqel 2709 . . . . . . . . . 10 (𝑥 = π → 𝑥 ∈ ℂ)
227226coscld 14861 . . . . . . . . 9 (𝑥 = π → (cos‘𝑥) ∈ ℂ)
228227negcld 10379 . . . . . . . 8 (𝑥 = π → -(cos‘𝑥) ∈ ℂ)
229228adantl 482 . . . . . . 7 ((𝜑𝑥 = π) → -(cos‘𝑥) ∈ ℂ)
230229mul02d 10234 . . . . . 6 ((𝜑𝑥 = π) → (0 · -(cos‘𝑥)) = 0)
231223, 230eqtrd 2656 . . . . 5 ((𝜑𝑥 = π) → (((sin‘𝑥)↑𝑁) · -(cos‘𝑥)) = 0)
2324, 6, 9, 37, 53, 81, 82, 105, 123, 184, 196, 214, 231itgparts 23810 . . . 4 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = ((0 − 0) − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
233 df-neg 10269 . . . . 5 -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
234233a1i 11 . . . 4 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (0 − ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥))
2352, 232, 2343eqtr4a 2682 . . 3 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥)
23677, 79, 79mulassd 10063 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))))
237 sqval 12922 . . . . . . . . . . . . . 14 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥)↑2) = ((cos‘𝑥) · (cos‘𝑥)))
238237eqcomd 2628 . . . . . . . . . . . . 13 ((cos‘𝑥) ∈ ℂ → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
23978, 238syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
240239adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥) · (cos‘𝑥)) = ((cos‘𝑥)↑2))
241240oveq2d 6666 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)))
24278sqcld 13006 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) ∈ ℂ)
243242adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → ((cos‘𝑥)↑2) ∈ ℂ)
24471, 76, 243mulassd 10063 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥)↑2)) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
245241, 244eqtrd 2656 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · ((cos‘𝑥) · (cos‘𝑥))) = (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))))
24676, 243mulcomd 10061 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2)) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
247246oveq2d 6666 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · (((sin‘𝑥)↑(𝑁 − 1)) · ((cos‘𝑥)↑2))) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
248236, 245, 2473eqtrd 2660 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = (𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
249248negeqd 10275 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
25080, 79mulneg2d 10484 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = -(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · (cos‘𝑥)))
251243, 76mulcld 10060 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
25271, 251mulneg1d 10483 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = -(𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
253249, 250, 2523eqtr4d 2666 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) = (-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))))
254253itgeq2dv 23548 . . . . 5 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
25557negcld 10379 . . . . . 6 (𝜑 → -𝑁 ∈ ℂ)
25638sqcld 13006 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → ((cos‘𝑥)↑2) ∈ ℂ)
257256adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((cos‘𝑥)↑2) ∈ ℂ)
258257, 108mulcld 10060 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
259 itgsinexplem1.6 . . . . . . . . . . . . 13 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
260259fvmpt2 6291 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) ∈ ℂ) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
26116, 258, 260syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → (𝑀𝑥) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
262261eqcomd 2628 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) = (𝑀𝑥))
263262mpteq2dva 4744 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) = (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)))
264 nfmpt1 4747 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))))
265259, 264nfcxfr 2762 . . . . . . . . . 10 𝑥𝑀
266 nfcv 2764 . . . . . . . . . . . . 13 𝑥cos
267 2nn0 11309 . . . . . . . . . . . . . 14 2 ∈ ℕ0
268267a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ0)
269266, 49, 268expcnfg 39823 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((cos‘𝑥)↑2)) ∈ (ℂ–cn→ℂ))
270269, 61mulcncf 23215 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ (ℂ–cn→ℂ))
271259, 270syl5eqel 2705 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℂ–cn→ℂ))
272265, 271, 35cncfmptss 39819 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑀𝑥)) ∈ ((0[,]π)–cn→ℂ))
273263, 272eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ))
274 cniccibl 23607 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
2754, 6, 273, 274syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
27684, 86, 258, 275iblss 23571 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) ∈ 𝐿1)
277255, 251, 276itgmulc2 23600 . . . . 5 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = ∫(0(,)π)(-𝑁 · (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) d𝑥)
278254, 277eqtr4d 2659 . . . 4 (𝜑 → ∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
279278negeqd 10275 . . 3 (𝜑 → -∫(0(,)π)(((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
280235, 279eqtrd 2656 . 2 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
281251, 276itgcl 23550 . . . 4 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥 ∈ ℂ)
28257, 281mulneg1d 10483 . . 3 (𝜑 → (-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = -(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
283282negeqd 10275 . 2 (𝜑 → -(-𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
28457, 281mulcld 10060 . . 3 (𝜑 → (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) ∈ ℂ)
285284negnegd 10383 . 2 (𝜑 → --(𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥) = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
286280, 283, 2853eqtrd 2660 1 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  (,)cioo 12175  [,]cicc 12178  cexp 12860  sincsin 14794  cosccos 14795  πcpi 14797  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  citg 23387   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  itgsinexp  40170
  Copyright terms: Public domain W3C validator