MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextval Structured version   Visualization version   GIF version

Theorem cnextval 21865
Description: The function applying continuous extension to a given function 𝑓. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Assertion
Ref Expression
cnextval ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Distinct variable groups:   𝑥,𝑓,𝐽   𝑓,𝐾,𝑥

Proof of Theorem cnextval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
21oveq2d 6666 . . 3 (𝑗 = 𝐽 → ( 𝑘pm 𝑗) = ( 𝑘pm 𝐽))
3 fveq2 6191 . . . . 5 (𝑗 = 𝐽 → (cls‘𝑗) = (cls‘𝐽))
43fveq1d 6193 . . . 4 (𝑗 = 𝐽 → ((cls‘𝑗)‘dom 𝑓) = ((cls‘𝐽)‘dom 𝑓))
5 fveq2 6191 . . . . . . . . 9 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
65fveq1d 6193 . . . . . . . 8 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
76oveq1d 6665 . . . . . . 7 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓) = (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))
87oveq2d 6666 . . . . . 6 (𝑗 = 𝐽 → (𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓)) = (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
98fveq1d 6193 . . . . 5 (𝑗 = 𝐽 → ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
109xpeq2d 5139 . . . 4 (𝑗 = 𝐽 → ({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
114, 10iuneq12d 4546 . . 3 (𝑗 = 𝐽 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
122, 11mpteq12dv 4733 . 2 (𝑗 = 𝐽 → (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
13 unieq 4444 . . . 4 (𝑘 = 𝐾 𝑘 = 𝐾)
1413oveq1d 6665 . . 3 (𝑘 = 𝐾 → ( 𝑘pm 𝐽) = ( 𝐾pm 𝐽))
15 oveq1 6657 . . . . . 6 (𝑘 = 𝐾 → (𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓)))
1615fveq1d 6193 . . . . 5 (𝑘 = 𝐾 → ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))
1716xpeq2d 5139 . . . 4 (𝑘 = 𝐾 → ({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1817iuneq2d 4547 . . 3 (𝑘 = 𝐾 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)) = 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))
1914, 18mpteq12dv 4733 . 2 (𝑘 = 𝐾 → (𝑓 ∈ ( 𝑘pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
20 df-cnext 21864 . 2 CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
21 ovex 6678 . . 3 ( 𝐾pm 𝐽) ∈ V
2221mptex 6486 . 2 (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))) ∈ V
2312, 19, 20, 22ovmpt2 6796 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽CnExt𝐾) = (𝑓 ∈ ( 𝐾pm 𝐽) ↦ 𝑥 ∈ ((cls‘𝐽)‘dom 𝑓)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {csn 4177   cuni 4436   ciun 4520  cmpt 4729   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  pm cpm 7858  t crest 16081  Topctop 20698  clsccl 20822  neicnei 20901   fLimf cflf 21739  CnExtccnext 21863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cnext 21864
This theorem is referenced by:  cnextfval  21866
  Copyright terms: Public domain W3C validator