MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextval Structured version   Visualization version   Unicode version

Theorem cnextval 21865
Description: The function applying continuous extension to a given function  f. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Assertion
Ref Expression
cnextval  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( JCnExt K )  =  ( f  e.  ( U. K  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
Distinct variable groups:    x, f, J    f, K, x

Proof of Theorem cnextval
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
21oveq2d 6666 . . 3  |-  ( j  =  J  ->  ( U. k  ^pm  U. j
)  =  ( U. k  ^pm  U. J ) )
3 fveq2 6191 . . . . 5  |-  ( j  =  J  ->  ( cls `  j )  =  ( cls `  J
) )
43fveq1d 6193 . . . 4  |-  ( j  =  J  ->  (
( cls `  j
) `  dom  f )  =  ( ( cls `  J ) `  dom  f ) )
5 fveq2 6191 . . . . . . . . 9  |-  ( j  =  J  ->  ( nei `  j )  =  ( nei `  J
) )
65fveq1d 6193 . . . . . . . 8  |-  ( j  =  J  ->  (
( nei `  j
) `  { x } )  =  ( ( nei `  J
) `  { x } ) )
76oveq1d 6665 . . . . . . 7  |-  ( j  =  J  ->  (
( ( nei `  j
) `  { x } )t  dom  f )  =  ( ( ( nei `  J ) `  {
x } )t  dom  f
) )
87oveq2d 6666 . . . . . 6  |-  ( j  =  J  ->  (
k  fLimf  ( ( ( nei `  j ) `
 { x }
)t 
dom  f ) )  =  ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) )
98fveq1d 6193 . . . . 5  |-  ( j  =  J  ->  (
( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f )  =  ( ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )
109xpeq2d 5139 . . . 4  |-  ( j  =  J  ->  ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f ) )  =  ( { x }  X.  ( ( k 
fLimf  ( ( ( nei `  J ) `  {
x } )t  dom  f
) ) `  f
) ) )
114, 10iuneq12d 4546 . . 3  |-  ( j  =  J  ->  U_ x  e.  ( ( cls `  j
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f ) )  =  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) )
122, 11mpteq12dv 4733 . 2  |-  ( j  =  J  ->  (
f  e.  ( U. k  ^pm  U. j ) 
|->  U_ x  e.  ( ( cls `  j
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f ) ) )  =  ( f  e.  ( U. k  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J ) `  dom  f ) ( { x }  X.  (
( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
13 unieq 4444 . . . 4  |-  ( k  =  K  ->  U. k  =  U. K )
1413oveq1d 6665 . . 3  |-  ( k  =  K  ->  ( U. k  ^pm  U. J
)  =  ( U. K  ^pm  U. J ) )
15 oveq1 6657 . . . . . 6  |-  ( k  =  K  ->  (
k  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
dom  f ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) )
1615fveq1d 6193 . . . . 5  |-  ( k  =  K  ->  (
( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )
1716xpeq2d 5139 . . . 4  |-  ( k  =  K  ->  ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )  =  ( { x }  X.  ( ( K 
fLimf  ( ( ( nei `  J ) `  {
x } )t  dom  f
) ) `  f
) ) )
1817iuneq2d 4547 . . 3  |-  ( k  =  K  ->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )  =  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) )
1914, 18mpteq12dv 4733 . 2  |-  ( k  =  K  ->  (
f  e.  ( U. k  ^pm  U. J ) 
|->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) )  =  ( f  e.  ( U. K  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J ) `  dom  f ) ( { x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
20 df-cnext 21864 . 2  |- CnExt  =  ( j  e.  Top , 
k  e.  Top  |->  ( f  e.  ( U. k  ^pm  U. j ) 
|->  U_ x  e.  ( ( cls `  j
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
21 ovex 6678 . . 3  |-  ( U. K  ^pm  U. J )  e.  _V
2221mptex 6486 . 2  |-  ( f  e.  ( U. K  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J ) `  dom  f ) ( { x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) )  e.  _V
2312, 19, 20, 22ovmpt2 6796 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( JCnExt K )  =  ( f  e.  ( U. K  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   U.cuni 4436   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   ↾t crest 16081   Topctop 20698   clsccl 20822   neicnei 20901    fLimf cflf 21739  CnExtccnext 21863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cnext 21864
This theorem is referenced by:  cnextfval  21866
  Copyright terms: Public domain W3C validator