Proof of Theorem cnmpt1vsca
| Step | Hyp | Ref
| Expression |
| 1 | | cnmpt1vsca.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
| 2 | | cnmpt1vsca.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ TopMod) |
| 3 | | tlmtrg.f |
. . . . . . . . . 10
⊢ 𝐹 = (Scalar‘𝑊) |
| 4 | 3 | tlmscatps 21994 |
. . . . . . . . 9
⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
| 5 | 2, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ TopSp) |
| 6 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 7 | | cnmpt1vsca.k |
. . . . . . . . 9
⊢ 𝐾 = (TopOpen‘𝐹) |
| 8 | 6, 7 | istps 20738 |
. . . . . . . 8
⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈
(TopOn‘(Base‘𝐹))) |
| 9 | 5, 8 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 10 | | cnmpt1vsca.a |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
| 11 | | cnf2 21053 |
. . . . . . 7
⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 12 | 1, 9, 10, 11 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 13 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 14 | 13 | fmpt 6381 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ (Base‘𝐹) ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 15 | 12, 14 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ (Base‘𝐹)) |
| 16 | 15 | r19.21bi 2932 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
| 17 | | tlmtps 21991 |
. . . . . . . . 9
⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) |
| 18 | 2, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 19 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 20 | | cnmpt1vsca.j |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝑊) |
| 21 | 19, 20 | istps 20738 |
. . . . . . . 8
⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈
(TopOn‘(Base‘𝑊))) |
| 22 | 18, 21 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 23 | | cnmpt1vsca.b |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
| 24 | | cnf2 21053 |
. . . . . . 7
⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 25 | 1, 22, 23, 24 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 27 | 26 | fmpt 6381 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 28 | 25, 27 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ (Base‘𝑊)) |
| 29 | 28 | r19.21bi 2932 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
| 30 | | eqid 2622 |
. . . . 5
⊢ (
·sf ‘𝑊) = ( ·sf
‘𝑊) |
| 31 | | cnmpt1vsca.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
| 32 | 19, 3, 6, 30, 31 | scafval 18882 |
. . . 4
⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf
‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 33 | 16, 29, 32 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf
‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 34 | 33 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf
‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 35 | 30, 20, 3, 7 | vscacn 21989 |
. . . 4
⊢ (𝑊 ∈ TopMod → (
·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 36 | 2, 35 | syl 17 |
. . 3
⊢ (𝜑 → (
·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 37 | 1, 10, 23, 36 | cnmpt12f 21469 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf
‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
| 38 | 34, 37 | eqeltrrd 2702 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |