MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps Structured version   Visualization version   GIF version

Theorem istps 20738
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 20737 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2693 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 20718 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 0ntop 20710 . . . . . 6 ¬ ∅ ∈ Top
5 istps.j . . . . . . . 8 𝐽 = (TopOpen‘𝐾)
6 fvprc 6185 . . . . . . . 8 𝐾 ∈ V → (TopOpen‘𝐾) = ∅)
75, 6syl5eq 2668 . . . . . . 7 𝐾 ∈ V → 𝐽 = ∅)
87eleq1d 2686 . . . . . 6 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top))
94, 8mtbiri 317 . . . . 5 𝐾 ∈ V → ¬ 𝐽 ∈ Top)
109con4i 113 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
113, 10syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
12 fveq2 6191 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1312, 5syl6eqr 2674 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
14 fveq2 6191 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
15 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1614, 15syl6eqr 2674 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1716fveq2d 6195 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
1813, 17eleq12d 2695 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
1911, 18elab3 3358 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
202, 19bitri 264 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  c0 3915  cfv 5888  Basecbs 15857  TopOpenctopn 16082  Topctop 20698  TopOnctopon 20715  TopSpctps 20736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-topon 20716  df-topsp 20737
This theorem is referenced by:  istps2  20739  tpspropd  20742  tsettps  20745  indistps2ALT  20818  resstps  20991  prdstps  21432  imastps  21524  xpstopnlem2  21614  tmdtopon  21885  tgptopon  21886  istgp2  21895  oppgtmd  21901  distgp  21903  indistgp  21904  symgtgp  21905  qustgplem  21924  prdstmdd  21927  eltsms  21936  tsmscls  21941  tsmsgsum  21942  tsmsid  21943  tsmsmhm  21949  tsmsadd  21950  dvrcn  21987  cnmpt1vsca  21997  cnmpt2vsca  21998  tlmtgp  21999  ressusp  22069  tustps  22077  ucncn  22089  neipcfilu  22100  cnextucn  22107  ucnextcn  22108  isxms2  22253  ressxms  22330  prdsxmslem2  22334  nrgtrg  22494  cnfldtopon  22586  cnmpt1ds  22645  cnmpt2ds  22646  nmcn  22647  cnmpt1ip  23046  cnmpt2ip  23047  csscld  23048  clsocv  23049  minveclem4a  23201  mhmhmeotmd  29973  rrxtopon  40508  qndenserrnopnlem  40517
  Copyright terms: Public domain W3C validator