| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coahom | Structured version Visualization version GIF version | ||
| Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homdmcoa.o | ⊢ · = (compa‘𝐶) |
| homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| coahom | ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 2 | homdmcoa.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 5 | eqid 2622 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | coaval 16718 | . 2 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉) |
| 7 | eqid 2622 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | 2 | homarcl 16678 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | eqid 2622 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | 2, 7 | homarcl2 16685 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 12 | 3, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 13 | 12 | simpld 475 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 14 | 2, 7 | homarcl2 16685 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
| 15 | 4, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (Base‘𝐶) ∧ 𝑍 ∈ (Base‘𝐶))) |
| 16 | 15 | simprd 479 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 17 | 12 | simprd 479 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 18 | 2, 10 | homahom 16689 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 19 | 3, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 20 | 2, 10 | homahom 16689 | . . . . 5 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
| 21 | 4, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
| 22 | 7, 10, 5, 9, 13, 17, 16, 19, 21 | catcocl 16346 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)) ∈ (𝑋(Hom ‘𝐶)𝑍)) |
| 23 | 2, 7, 9, 10, 13, 16, 22 | elhomai2 16684 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))〉 ∈ (𝑋𝐻𝑍)) |
| 24 | 6, 23 | eqeltrd 2701 | 1 ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 〈cotp 4185 ‘cfv 5888 (class class class)co 6650 2nd c2nd 7167 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 Homachoma 16673 compaccoa 16704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-cat 16329 df-doma 16674 df-coda 16675 df-homa 16676 df-arw 16677 df-coa 16706 |
| This theorem is referenced by: coapm 16721 arwass 16724 |
| Copyright terms: Public domain | W3C validator |