MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coapm Structured version   Visualization version   GIF version

Theorem coapm 16721
Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coapm.o · = (compa𝐶)
coapm.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
coapm · ∈ (𝐴pm (𝐴 × 𝐴))

Proof of Theorem coapm
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coapm.o . . . . . 6 · = (compa𝐶)
2 coapm.a . . . . . 6 𝐴 = (Arrow‘𝐶)
3 eqid 2622 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 16714 . . . . 5 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54mpt2fun 6762 . . . 4 Fun ·
6 funfn 5918 . . . 4 (Fun ·· Fn dom · )
75, 6mpbi 220 . . 3 · Fn dom ·
81, 2dmcoass 16716 . . . . . . . . 9 dom · ⊆ (𝐴 × 𝐴)
98sseli 3599 . . . . . . . 8 (𝑧 ∈ dom ·𝑧 ∈ (𝐴 × 𝐴))
10 1st2nd2 7205 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐴) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
119, 10syl 17 . . . . . . 7 (𝑧 ∈ dom ·𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1211fveq2d 6195 . . . . . 6 (𝑧 ∈ dom · → ( ·𝑧) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩))
13 df-ov 6653 . . . . . 6 ((1st𝑧) · (2nd𝑧)) = ( · ‘⟨(1st𝑧), (2nd𝑧)⟩)
1412, 13syl6eqr 2674 . . . . 5 (𝑧 ∈ dom · → ( ·𝑧) = ((1st𝑧) · (2nd𝑧)))
15 eqid 2622 . . . . . . 7 (Homa𝐶) = (Homa𝐶)
162, 15homarw 16696 . . . . . 6 ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))) ⊆ 𝐴
17 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ dom ·𝑧 ∈ dom · )
1811, 17eqeltrrd 2702 . . . . . . . . . . . 12 (𝑧 ∈ dom · → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
19 df-br 4654 . . . . . . . . . . . 12 ((1st𝑧)dom · (2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom · )
2018, 19sylibr 224 . . . . . . . . . . 11 (𝑧 ∈ dom · → (1st𝑧)dom · (2nd𝑧))
211, 2eldmcoa 16715 . . . . . . . . . . 11 ((1st𝑧)dom · (2nd𝑧) ↔ ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2220, 21sylib 208 . . . . . . . . . 10 (𝑧 ∈ dom · → ((2nd𝑧) ∈ 𝐴 ∧ (1st𝑧) ∈ 𝐴 ∧ (coda‘(2nd𝑧)) = (doma‘(1st𝑧))))
2322simp1d 1073 . . . . . . . . 9 (𝑧 ∈ dom · → (2nd𝑧) ∈ 𝐴)
242, 15arwhoma 16695 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐴 → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2523, 24syl 17 . . . . . . . 8 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))))
2622simp3d 1075 . . . . . . . . 9 (𝑧 ∈ dom · → (coda‘(2nd𝑧)) = (doma‘(1st𝑧)))
2726oveq2d 6666 . . . . . . . 8 (𝑧 ∈ dom · → ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(2nd𝑧))) = ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2825, 27eleqtrd 2703 . . . . . . 7 (𝑧 ∈ dom · → (2nd𝑧) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(doma‘(1st𝑧))))
2922simp2d 1074 . . . . . . . 8 (𝑧 ∈ dom · → (1st𝑧) ∈ 𝐴)
302, 15arwhoma 16695 . . . . . . . 8 ((1st𝑧) ∈ 𝐴 → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3129, 30syl 17 . . . . . . 7 (𝑧 ∈ dom · → (1st𝑧) ∈ ((doma‘(1st𝑧))(Homa𝐶)(coda‘(1st𝑧))))
321, 15, 28, 31coahom 16720 . . . . . 6 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ ((doma‘(2nd𝑧))(Homa𝐶)(coda‘(1st𝑧))))
3316, 32sseldi 3601 . . . . 5 (𝑧 ∈ dom · → ((1st𝑧) · (2nd𝑧)) ∈ 𝐴)
3414, 33eqeltrd 2701 . . . 4 (𝑧 ∈ dom · → ( ·𝑧) ∈ 𝐴)
3534rgen 2922 . . 3 𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴
36 ffnfv 6388 . . 3 ( · :dom ·𝐴 ↔ ( · Fn dom · ∧ ∀𝑧 ∈ dom · ( ·𝑧) ∈ 𝐴))
377, 35, 36mpbir2an 955 . 2 · :dom ·𝐴
38 fvex 6201 . . . 4 (Arrow‘𝐶) ∈ V
392, 38eqeltri 2697 . . 3 𝐴 ∈ V
4039, 39xpex 6962 . . 3 (𝐴 × 𝐴) ∈ V
4139, 40elpm2 7889 . 2 ( · ∈ (𝐴pm (𝐴 × 𝐴)) ↔ ( · :dom ·𝐴 ∧ dom · ⊆ (𝐴 × 𝐴)))
4237, 8, 41mpbir2an 955 1 · ∈ (𝐴pm (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  cop 4183  cotp 4185   class class class wbr 4653   × cxp 5112  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  pm cpm 7858  compcco 15953  domacdoma 16670  codaccoda 16671  Arrowcarw 16672  Homachoma 16673  compaccoa 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pm 7860  df-cat 16329  df-doma 16674  df-coda 16675  df-homa 16676  df-arw 16677  df-coa 16706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator