Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copissgrp Structured version   Visualization version   GIF version

Theorem copissgrp 41808
Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copissgrp.b 𝐵 = (Base‘𝑀)
copissgrp.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copissgrp.n (𝜑𝐵 ≠ ∅)
copissgrp.c (𝜑𝐶𝐵)
Assertion
Ref Expression
copissgrp (𝜑𝑀 ∈ SGrp)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem copissgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copissgrp.b . . 3 𝐵 = (Base‘𝑀)
2 copissgrp.p . . 3 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
3 copissgrp.n . . 3 (𝜑𝐵 ≠ ∅)
4 copissgrp.c . . . 4 (𝜑𝐶𝐵)
54adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
61, 2, 3, 5opmpt2ismgm 41807 . 2 (𝜑𝑀 ∈ Mgm)
7 eqidd 2623 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
8 eqidd 2623 . . . . . . 7 (((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝐶𝑦 = 𝑐)) → 𝐶 = 𝐶)
9 simpl 473 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
10 simpr3 1069 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
117, 8, 9, 10, 9ovmpt2d 6788 . . . . . 6 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
12 eqidd 2623 . . . . . . 7 (((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝐶)) → 𝐶 = 𝐶)
13 simpr1 1067 . . . . . . 7 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
147, 12, 13, 9, 9ovmpt2d 6788 . . . . . 6 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶) = 𝐶)
1511, 14eqtr4d 2659 . . . . 5 ((𝐶𝐵 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
164, 15sylan 488 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
17 eqidd 2623 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
18 eqidd 2623 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
19 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
20 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
214adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
2217, 18, 19, 20, 21ovmpt2d 6788 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
2322oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝐶(𝑥𝐵, 𝑦𝐵𝐶)𝑐))
24 eqidd 2623 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
25 simpr3 1069 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
2617, 24, 20, 25, 21ovmpt2d 6788 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2726oveq2d 6666 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝐶))
2816, 23, 273eqtr4d 2666 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
2928ralrimivvva 2972 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
302eqcomi 2631 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
311, 30issgrp 17285 . 2 (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
326, 29, 31sylanbrc 698 1 (𝜑𝑀 ∈ SGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  c0 3915  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mgm 17242  df-sgrp 17284
This theorem is referenced by:  cznrng  41955
  Copyright terms: Public domain W3C validator