Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznrng Structured version   Visualization version   GIF version

Theorem cznrng 41955
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznrng ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 cznrng.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
32zncrng 19893 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
41, 3syl 17 . . . . 5 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5 crngring 18558 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
6 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 cznrng.0 . . . . . . . 8 0 = (0g𝑌)
86, 7ring0cl 18569 . . . . . . 7 (𝑌 ∈ Ring → 0𝐵)
9 eleq1a 2696 . . . . . . 7 ( 0𝐵 → (𝐶 = 0𝐶𝐵))
108, 9syl 17 . . . . . 6 (𝑌 ∈ Ring → (𝐶 = 0𝐶𝐵))
115, 10syl 17 . . . . 5 (𝑌 ∈ CRing → (𝐶 = 0𝐶𝐵))
124, 11syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐶 = 0𝐶𝐵))
1312imp 445 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶𝐵)
14 cznrng.x . . . . . 6 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
152, 6, 14cznabel 41954 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
1615adantlr 751 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
17 eqid 2622 . . . . . 6 (mulGrp‘𝑋) = (mulGrp‘𝑋)
182, 6, 14cznrnglem 41953 . . . . . 6 𝐵 = (Base‘𝑋)
1917, 18mgpbas 18495 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑋))
2014fveq2i 6194 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
21 fvex 6201 . . . . . . . . 9 (ℤ/nℤ‘𝑁) ∈ V
222, 21eqeltri 2697 . . . . . . . 8 𝑌 ∈ V
23 fvex 6201 . . . . . . . . . 10 (Base‘𝑌) ∈ V
246, 23eqeltri 2697 . . . . . . . . 9 𝐵 ∈ V
2524, 24mpt2ex 7247 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
26 mulrid 15997 . . . . . . . . 9 .r = Slot (.r‘ndx)
2726setsid 15914 . . . . . . . 8 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
2822, 25, 27mp2an 708 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
2920, 28mgpplusg 18493 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
3029eqcomi 2631 . . . . 5 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
31 ne0i 3921 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
3231adantl 482 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐵 ≠ ∅)
33 simpr 477 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐶𝐵)
3419, 30, 32, 33copissgrp 41808 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∈ SGrp)
35 oveq1 6657 . . . . . . . . 9 (𝐶 = 0 → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
3635ad3antlr 767 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
374, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
38 ringmnd 18556 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
3937, 38syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑌 ∈ Mnd)
4039adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd)
4140anim1i 592 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
4241adantr 481 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
43 eqid 2622 . . . . . . . . . 10 (+g𝑌) = (+g𝑌)
446, 43, 7mndlid 17311 . . . . . . . . 9 ((𝑌 ∈ Mnd ∧ 𝐶𝐵) → ( 0 (+g𝑌)𝐶) = 𝐶)
4542, 44syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ( 0 (+g𝑌)𝐶) = 𝐶)
4636, 45eqtrd 2656 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = 𝐶)
47 eqidd 2623 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
48 eqidd 2623 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
49 simpr1 1067 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
50 simpr2 1068 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
5133adantr 481 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
5247, 48, 49, 50, 51ovmpt2d 6788 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
53 eqidd 2623 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
54 simpr3 1069 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
5547, 53, 49, 54, 51ovmpt2d 6788 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
5652, 55oveq12d 6668 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
57 eqidd 2623 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = (𝑏(+g𝑌)𝑐))) → 𝐶 = 𝐶)
5837ad3antrrr 766 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑌 ∈ Ring)
596, 43ringacl 18578 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑏𝐵𝑐𝐵) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
6058, 50, 54, 59syl3anc 1326 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
6147, 57, 49, 60, 51ovmpt2d 6788 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = 𝐶)
6246, 56, 613eqtr4rd 2667 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
63 eqidd 2623 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
6447, 63, 50, 54, 51ovmpt2d 6788 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6555, 64oveq12d 6668 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
66 eqidd 2623 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = (𝑎(+g𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶)
676, 43ringacl 18578 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6858, 49, 50, 67syl3anc 1326 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6947, 66, 68, 54, 51ovmpt2d 6788 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
7046, 65, 693eqtr4rd 2667 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
7162, 70jca 554 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7271ralrimivvva 2972 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7316, 34, 723jca 1242 . . 3 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
7413, 73mpdan 702 . 2 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
75 plusgid 15977 . . . . 5 +g = Slot (+g‘ndx)
76 plusgndxnmulrndx 15998 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
7775, 76setsnid 15915 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7814fveq2i 6194 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7977, 78eqtr4i 2647 . . 3 (+g𝑌) = (+g𝑋)
8014eqcomi 2631 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
8180fveq2i 6194 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
8228, 81eqtri 2644 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (.r𝑋)
8318, 17, 79, 82isrng 41876 . 2 (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
8474, 83sylibr 224 1 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  c0 3915  cop 4183  cfv 5888  (class class class)co 6650  cmpt2 6652  cn 11020  0cn0 11292  ndxcnx 15854   sSet csts 15855  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  SGrpcsgrp 17283  Mndcmnd 17294  Abelcabl 18194  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548  ℤ/nczn 19851  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592  df-eqg 17593  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zn 19855  df-rng0 41875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator