| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 11299 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 2 | | cznrng.y |
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 3 | 2 | zncrng 19893 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ CRing) |
| 5 | | crngring 18558 |
. . . . . 6
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
| 6 | | cznrng.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
| 7 | | cznrng.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑌) |
| 8 | 6, 7 | ring0cl 18569 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 0 ∈ 𝐵) |
| 9 | | eleq1a 2696 |
. . . . . . 7
⊢ ( 0 ∈ 𝐵 → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝑌 ∈ Ring → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
| 11 | 5, 10 | syl 17 |
. . . . 5
⊢ (𝑌 ∈ CRing → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
| 12 | 4, 11 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
| 13 | 12 | imp 445 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶 ∈ 𝐵) |
| 14 | | cznrng.x |
. . . . . 6
⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
| 15 | 2, 6, 14 | cznabel 41954 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
| 16 | 15 | adantlr 751 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
| 17 | | eqid 2622 |
. . . . . 6
⊢
(mulGrp‘𝑋) =
(mulGrp‘𝑋) |
| 18 | 2, 6, 14 | cznrnglem 41953 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑋) |
| 19 | 17, 18 | mgpbas 18495 |
. . . . 5
⊢ 𝐵 =
(Base‘(mulGrp‘𝑋)) |
| 20 | 14 | fveq2i 6194 |
. . . . . . 7
⊢
(mulGrp‘𝑋) =
(mulGrp‘(𝑌 sSet
〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 21 | | fvex 6201 |
. . . . . . . . 9
⊢
(ℤ/nℤ‘𝑁) ∈ V |
| 22 | 2, 21 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑌 ∈ V |
| 23 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝑌)
∈ V |
| 24 | 6, 23 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 25 | 24, 24 | mpt2ex 7247 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 26 | | mulrid 15997 |
. . . . . . . . 9
⊢
.r = Slot (.r‘ndx) |
| 27 | 26 | setsid 15914 |
. . . . . . . 8
⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
| 28 | 22, 25, 27 | mp2an 708 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 29 | 20, 28 | mgpplusg 18493 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
| 30 | 29 | eqcomi 2631 |
. . . . 5
⊢
(+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 31 | | ne0i 3921 |
. . . . . 6
⊢ (𝐶 ∈ 𝐵 → 𝐵 ≠ ∅) |
| 32 | 31 | adantl 482 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝐵 ≠ ∅) |
| 33 | | simpr 477 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 34 | 19, 30, 32, 33 | copissgrp 41808 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∈ SGrp) |
| 35 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝐶 = 0 → (𝐶(+g‘𝑌)𝐶) = ( 0 (+g‘𝑌)𝐶)) |
| 36 | 35 | ad3antlr 767 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(+g‘𝑌)𝐶) = ( 0 (+g‘𝑌)𝐶)) |
| 37 | 4, 5 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ Ring) |
| 38 | | ringmnd 18556 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ Mnd) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd) |
| 41 | 40 | anim1i 592 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵)) |
| 42 | 41 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵)) |
| 43 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝑌) = (+g‘𝑌) |
| 44 | 6, 43, 7 | mndlid 17311 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵) → ( 0 (+g‘𝑌)𝐶) = 𝐶) |
| 45 | 42, 44 | syl 17 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ( 0 (+g‘𝑌)𝐶) = 𝐶) |
| 46 | 36, 45 | eqtrd 2656 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(+g‘𝑌)𝐶) = 𝐶) |
| 47 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 48 | | eqidd 2623 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → 𝐶 = 𝐶) |
| 49 | | simpr1 1067 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
| 50 | | simpr2 1068 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
| 51 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| 52 | 47, 48, 49, 50, 51 | ovmpt2d 6788 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) = 𝐶) |
| 53 | | eqidd 2623 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 54 | | simpr3 1069 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
| 55 | 47, 53, 49, 54, 51 | ovmpt2d 6788 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 56 | 52, 55 | oveq12d 6668 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) = (𝐶(+g‘𝑌)𝐶)) |
| 57 | | eqidd 2623 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = (𝑏(+g‘𝑌)𝑐))) → 𝐶 = 𝐶) |
| 58 | 37 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑌 ∈ Ring) |
| 59 | 6, 43 | ringacl 18578 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑏(+g‘𝑌)𝑐) ∈ 𝐵) |
| 60 | 58, 50, 54, 59 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏(+g‘𝑌)𝑐) ∈ 𝐵) |
| 61 | 47, 57, 49, 60, 51 | ovmpt2d 6788 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = 𝐶) |
| 62 | 46, 56, 61 | 3eqtr4rd 2667 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
| 63 | | eqidd 2623 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑏 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 64 | 47, 63, 50, 54, 51 | ovmpt2d 6788 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 65 | 55, 64 | oveq12d 6668 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) = (𝐶(+g‘𝑌)𝐶)) |
| 66 | | eqidd 2623 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = (𝑎(+g‘𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 67 | 6, 43 | ringacl 18578 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
| 68 | 58, 49, 50, 67 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
| 69 | 47, 66, 68, 54, 51 | ovmpt2d 6788 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 70 | 46, 65, 69 | 3eqtr4rd 2667 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
| 71 | 62, 70 | jca 554 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)))) |
| 72 | 71 | ralrimivvva 2972 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)))) |
| 73 | 16, 34, 72 | 3jca 1242 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
| 74 | 13, 73 | mpdan 702 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧
(mulGrp‘𝑋) ∈
SGrp ∧ ∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
| 75 | | plusgid 15977 |
. . . . 5
⊢
+g = Slot (+g‘ndx) |
| 76 | | plusgndxnmulrndx 15998 |
. . . . 5
⊢
(+g‘ndx) ≠
(.r‘ndx) |
| 77 | 75, 76 | setsnid 15915 |
. . . 4
⊢
(+g‘𝑌) = (+g‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 78 | 14 | fveq2i 6194 |
. . . 4
⊢
(+g‘𝑋) = (+g‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 79 | 77, 78 | eqtr4i 2647 |
. . 3
⊢
(+g‘𝑌) = (+g‘𝑋) |
| 80 | 14 | eqcomi 2631 |
. . . . 5
⊢ (𝑌 sSet
〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
| 81 | 80 | fveq2i 6194 |
. . . 4
⊢
(.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
| 82 | 28, 81 | eqtri 2644 |
. . 3
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘𝑋) |
| 83 | 18, 17, 79, 82 | isrng 41876 |
. 2
⊢ (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧
(mulGrp‘𝑋) ∈
SGrp ∧ ∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
| 84 | 74, 83 | sylibr 224 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng) |