| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > copissgrp | Structured version Visualization version Unicode version | ||
| Description: A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| copissgrp.b |
|
| copissgrp.p |
|
| copissgrp.n |
|
| copissgrp.c |
|
| Ref | Expression |
|---|---|
| copissgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copissgrp.b |
. . 3
| |
| 2 | copissgrp.p |
. . 3
| |
| 3 | copissgrp.n |
. . 3
| |
| 4 | copissgrp.c |
. . . 4
| |
| 5 | 4 | adantr 481 |
. . 3
|
| 6 | 1, 2, 3, 5 | opmpt2ismgm 41807 |
. 2
|
| 7 | eqidd 2623 |
. . . . . . 7
| |
| 8 | eqidd 2623 |
. . . . . . 7
| |
| 9 | simpl 473 |
. . . . . . 7
| |
| 10 | simpr3 1069 |
. . . . . . 7
| |
| 11 | 7, 8, 9, 10, 9 | ovmpt2d 6788 |
. . . . . 6
|
| 12 | eqidd 2623 |
. . . . . . 7
| |
| 13 | simpr1 1067 |
. . . . . . 7
| |
| 14 | 7, 12, 13, 9, 9 | ovmpt2d 6788 |
. . . . . 6
|
| 15 | 11, 14 | eqtr4d 2659 |
. . . . 5
|
| 16 | 4, 15 | sylan 488 |
. . . 4
|
| 17 | eqidd 2623 |
. . . . . 6
| |
| 18 | eqidd 2623 |
. . . . . 6
| |
| 19 | simpr1 1067 |
. . . . . 6
| |
| 20 | simpr2 1068 |
. . . . . 6
| |
| 21 | 4 | adantr 481 |
. . . . . 6
|
| 22 | 17, 18, 19, 20, 21 | ovmpt2d 6788 |
. . . . 5
|
| 23 | 22 | oveq1d 6665 |
. . . 4
|
| 24 | eqidd 2623 |
. . . . . 6
| |
| 25 | simpr3 1069 |
. . . . . 6
| |
| 26 | 17, 24, 20, 25, 21 | ovmpt2d 6788 |
. . . . 5
|
| 27 | 26 | oveq2d 6666 |
. . . 4
|
| 28 | 16, 23, 27 | 3eqtr4d 2666 |
. . 3
|
| 29 | 28 | ralrimivvva 2972 |
. 2
|
| 30 | 2 | eqcomi 2631 |
. . 3
|
| 31 | 1, 30 | issgrp 17285 |
. 2
|
| 32 | 6, 29, 31 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-mgm 17242 df-sgrp 17284 |
| This theorem is referenced by: cznrng 41955 |
| Copyright terms: Public domain | W3C validator |