Proof of Theorem cvrnbtwn4
| Step | Hyp | Ref
| Expression |
| 1 | | cvrle.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | eqid 2622 |
. . . 4
⊢
(lt‘𝐾) =
(lt‘𝐾) |
| 3 | | cvrle.c |
. . . 4
⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 4 | 1, 2, 3 | cvrnbtwn 34558 |
. . 3
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌)) |
| 5 | | iman 440 |
. . . . 5
⊢ (((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) → (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)) ↔ ¬ ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) |
| 6 | | cvrle.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
| 7 | 6, 2 | pltval 16960 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍))) |
| 8 | 7 | 3adant3r2 1275 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍))) |
| 9 | 6, 2 | pltval 16960 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌))) |
| 10 | 9 | 3com23 1271 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌))) |
| 11 | 10 | 3adant3r1 1274 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌))) |
| 12 | 8, 11 | anbi12d 747 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍) ∧ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌)))) |
| 13 | | neanior 2886 |
. . . . . . . . 9
⊢ ((𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌) ↔ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)) |
| 14 | 13 | anbi2i 730 |
. . . . . . . 8
⊢ (((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ (𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌)) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) |
| 15 | | an4 865 |
. . . . . . . 8
⊢ (((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ (𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌)) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍) ∧ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌))) |
| 16 | 14, 15 | bitr3i 266 |
. . . . . . 7
⊢ (((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍) ∧ (𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌))) |
| 17 | 12, 16 | syl6rbbr 279 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)) ↔ (𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌))) |
| 18 | 17 | notbid 308 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ∧ ¬ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)) ↔ ¬ (𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌))) |
| 19 | 5, 18 | syl5rbb 273 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ (𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) → (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)))) |
| 20 | 19 | 3adant3 1081 |
. . 3
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋(lt‘𝐾)𝑍 ∧ 𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) → (𝑋 = 𝑍 ∨ 𝑍 = 𝑌)))) |
| 21 | 4, 20 | mpbid 222 |
. 2
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) → (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) |
| 22 | 1, 6 | posref 16951 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵) → 𝑍 ≤ 𝑍) |
| 23 | 22 | 3ad2antr3 1228 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ≤ 𝑍) |
| 24 | 23 | 3adant3 1081 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑍 ≤ 𝑍) |
| 25 | | breq1 4656 |
. . . . 5
⊢ (𝑋 = 𝑍 → (𝑋 ≤ 𝑍 ↔ 𝑍 ≤ 𝑍)) |
| 26 | 24, 25 | syl5ibrcom 237 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍 → 𝑋 ≤ 𝑍)) |
| 27 | 1, 6, 3 | cvrle 34565 |
. . . . . . . 8
⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| 28 | 27 | ex 450 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑋 ≤ 𝑌)) |
| 29 | 28 | 3adant3r3 1276 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → 𝑋 ≤ 𝑌)) |
| 30 | 29 | 3impia 1261 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) |
| 31 | | breq2 4657 |
. . . . 5
⊢ (𝑍 = 𝑌 → (𝑋 ≤ 𝑍 ↔ 𝑋 ≤ 𝑌)) |
| 32 | 30, 31 | syl5ibrcom 237 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌 → 𝑋 ≤ 𝑍)) |
| 33 | 26, 32 | jaod 395 |
. . 3
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍 ∨ 𝑍 = 𝑌) → 𝑋 ≤ 𝑍)) |
| 34 | | breq1 4656 |
. . . . 5
⊢ (𝑋 = 𝑍 → (𝑋 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌)) |
| 35 | 30, 34 | syl5ibcom 235 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍 → 𝑍 ≤ 𝑌)) |
| 36 | | breq2 4657 |
. . . . 5
⊢ (𝑍 = 𝑌 → (𝑍 ≤ 𝑍 ↔ 𝑍 ≤ 𝑌)) |
| 37 | 24, 36 | syl5ibcom 235 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌 → 𝑍 ≤ 𝑌)) |
| 38 | 35, 37 | jaod 395 |
. . 3
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍 ∨ 𝑍 = 𝑌) → 𝑍 ≤ 𝑌)) |
| 39 | 33, 38 | jcad 555 |
. 2
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍 ∨ 𝑍 = 𝑌) → (𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌))) |
| 40 | 21, 39 | impbid 202 |
1
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) |