Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval4N Structured version   Visualization version   GIF version

Theorem cvrval4N 34700
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrval4.b 𝐵 = (Base‘𝐾)
cvrval4.s < = (lt‘𝐾)
cvrval4.j = (join‘𝐾)
cvrval4.c 𝐶 = ( ⋖ ‘𝐾)
cvrval4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval4N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   < ,𝑝   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval4N
StepHypRef Expression
1 cvrval4.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrval4.s . . . . 5 < = (lt‘𝐾)
3 cvrval4.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 34557 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
5 eqid 2622 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6 cvrval4.j . . . . . . 7 = (join‘𝐾)
7 cvrval4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 5, 6, 3, 7cvrval3 34699 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
9 simpr 477 . . . . . . 7 ((¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
109reximi 3011 . . . . . 6 (∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
118, 10syl6bi 243 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1211imp 445 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)
134, 12jca 554 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌))
1413ex 450 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
15 simp1r 1086 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < 𝑌)
16 simp3 1063 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 𝑝) = 𝑌)
1715, 16breqtrrd 4681 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋 < (𝑋 𝑝))
18 simp1l1 1154 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝐾 ∈ HL)
19 simp1l2 1155 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐵)
20 simp2 1062 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → 𝑝𝐴)
211, 5, 6, 3, 7cvr1 34696 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
2218, 19, 20, 21syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑝)))
231, 2, 6, 3, 7cvr2N 34697 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2418, 19, 20, 23syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (𝑋 < (𝑋 𝑝) ↔ 𝑋𝐶(𝑋 𝑝)))
2522, 24bitr4d 271 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋𝑋 < (𝑋 𝑝)))
2617, 25mpbird 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → ¬ 𝑝(le‘𝐾)𝑋)
2726, 16jca 554 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝𝐴 ∧ (𝑋 𝑝) = 𝑌) → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))
28273exp 1264 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑝𝐴 → ((𝑋 𝑝) = 𝑌 → (¬ 𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌))))
2928reximdvai 3015 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (∃𝑝𝐴 (𝑋 𝑝) = 𝑌 → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3029expimpd 629 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → ∃𝑝𝐴𝑝(le‘𝐾)𝑋 ∧ (𝑋 𝑝) = 𝑌)))
3130, 8sylibrd 249 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
3214, 31impbid 202 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝𝐴 (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  ltcplt 16941  joincjn 16944  ccvr 34549  Atomscatm 34550  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator