Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddeval0 Structured version   Visualization version   GIF version

Theorem ddeval0 30298
Description: Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddeval0 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)

Proof of Theorem ddeval0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . . . 5 ℝ ∈ V
21ssex 4802 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
3 elpwg 4166 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ))
43biimpar 502 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ⊆ ℝ) → 𝐴 ∈ 𝒫 ℝ)
52, 4mpancom 703 . . 3 (𝐴 ⊆ ℝ → 𝐴 ∈ 𝒫 ℝ)
6 eleq2 2690 . . . . 5 (𝑎 = 𝐴 → (0 ∈ 𝑎 ↔ 0 ∈ 𝐴))
76ifbid 4108 . . . 4 (𝑎 = 𝐴 → if(0 ∈ 𝑎, 1, 0) = if(0 ∈ 𝐴, 1, 0))
8 df-dde 30296 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
9 1ex 10035 . . . . 5 1 ∈ V
10 c0ex 10034 . . . . 5 0 ∈ V
119, 10ifex 4156 . . . 4 if(0 ∈ 𝐴, 1, 0) ∈ V
127, 8, 11fvmpt 6282 . . 3 (𝐴 ∈ 𝒫 ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
135, 12syl 17 . 2 (𝐴 ⊆ ℝ → (δ‘𝐴) = if(0 ∈ 𝐴, 1, 0))
14 iffalse 4095 . 2 (¬ 0 ∈ 𝐴 → if(0 ∈ 𝐴, 1, 0) = 0)
1513, 14sylan9eq 2676 1 ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  ifcif 4086  𝒫 cpw 4158  cfv 5888  cr 9935  0cc0 9936  1c1 9937  δcdde 30295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-dde 30296
This theorem is referenced by:  ddemeas  30299
  Copyright terms: Public domain W3C validator