![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeof1o2 | Structured version Visualization version GIF version |
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeof1o2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 21563 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | cnf2 21053 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) | |
3 | 1, 2 | syl3an3 1361 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋⟶𝑌) |
4 | ffn 6045 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹 Fn 𝑋) |
6 | hmeocnvcn 21564 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
7 | cnf2 21053 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)) → ◡𝐹:𝑌⟶𝑋) | |
8 | 7 | 3com12 1269 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)) → ◡𝐹:𝑌⟶𝑋) |
9 | 6, 8 | syl3an3 1361 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → ◡𝐹:𝑌⟶𝑋) |
10 | ffn 6045 | . . 3 ⊢ (◡𝐹:𝑌⟶𝑋 → ◡𝐹 Fn 𝑌) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → ◡𝐹 Fn 𝑌) |
12 | dff1o4 6145 | . 2 ⊢ (𝐹:𝑋–1-1-onto→𝑌 ↔ (𝐹 Fn 𝑋 ∧ ◡𝐹 Fn 𝑌)) | |
13 | 5, 11, 12 | sylanbrc 698 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 ∈ wcel 1990 ◡ccnv 5113 Fn wfn 5883 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 TopOnctopon 20715 Cn ccn 21028 Homeochmeo 21556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-top 20699 df-topon 20716 df-cn 21031 df-hmeo 21558 |
This theorem is referenced by: hmeof1o 21567 qtophmeo 21620 cvmsf1o 31254 |
Copyright terms: Public domain | W3C validator |