Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmf1o Structured version   Visualization version   GIF version

Theorem mgmhmf1o 41787
Description: A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf1o.b 𝐵 = (Base‘𝑅)
mgmhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mgmhmf1o (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MgmHom 𝑅)))

Proof of Theorem mgmhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 41781 . . . . 5 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm))
21ancomd 467 . . . 4 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm))
32adantr 481 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm))
4 f1ocnv 6149 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
54adantl 482 . . . . 5 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
6 f1of 6137 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
75, 6syl 17 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
8 simpll 790 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MgmHom 𝑆))
97adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
10 simprl 794 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
119, 10ffvelrnd 6360 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
12 simprr 796 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
139, 12ffvelrnd 6360 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
14 mgmhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
15 eqid 2622 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
16 eqid 2622 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1714, 15, 16mgmhmlin 41786 . . . . . . . 8 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
188, 11, 13, 17syl3anc 1326 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
19 simplr 792 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
20 f1ocnvfv2 6533 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2119, 10, 20syl2anc 693 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
22 f1ocnvfv2 6533 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2319, 12, 22syl2anc 693 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2421, 23oveq12d 6668 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2518, 24eqtrd 2656 . . . . . 6 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
261simpld 475 . . . . . . . . . 10 (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝑅 ∈ Mgm)
2726adantr 481 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mgm)
2827adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mgm)
2914, 15mgmcl 17245 . . . . . . . 8 ((𝑅 ∈ Mgm ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3028, 11, 13, 29syl3anc 1326 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
31 f1ocnvfv 6534 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3219, 30, 31syl2anc 693 . . . . . 6 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3325, 32mpd 15 . . . . 5 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3433ralrimivva 2971 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
357, 34jca 554 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
36 mgmhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
3736, 14, 16, 15ismgmhm 41783 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑅) ↔ ((𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))))
383, 35, 37sylanbrc 698 . 2 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MgmHom 𝑅))
3914, 36mgmhmf 41784 . . . . 5 (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝐹:𝐵𝐶)
4039adantr 481 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵𝐶)
41 ffn 6045 . . . 4 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
4240, 41syl 17 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹 Fn 𝐵)
4336, 14mgmhmf 41784 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑅) → 𝐹:𝐶𝐵)
4443adantl 482 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐶𝐵)
45 ffn 6045 . . . 4 (𝐹:𝐶𝐵𝐹 Fn 𝐶)
4644, 45syl 17 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹 Fn 𝐶)
47 dff1o4 6145 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4842, 46, 47sylanbrc 698 . 2 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4938, 48impbida 877 1 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MgmHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  ccnv 5113   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-mgm 17242  df-mgmhm 41779
This theorem is referenced by:  rnghmf1o  41903
  Copyright terms: Public domain W3C validator