![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfmpt3 | Structured version Visualization version GIF version |
Description: Alternate definition for the "maps to" notation df-mpt 4730. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
dfmpt3 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4730 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | velsn 4193 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
3 | 2 | anbi2i 730 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
4 | 3 | anbi2i 730 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
5 | 4 | 2exbii 1775 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
6 | eliunxp 5259 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}))) | |
7 | elopab 4983 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) | |
8 | 5, 6, 7 | 3bitr4i 292 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
9 | 8 | eqriv 2619 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
10 | 1, 9 | eqtr4i 2647 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {csn 4177 〈cop 4183 ∪ ciun 4520 {copab 4712 ↦ cmpt 4729 × cxp 5112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 |
This theorem is referenced by: dfmpt 6410 taylpfval 24119 indval2 30076 |
Copyright terms: Public domain | W3C validator |