MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt3 Structured version   Visualization version   GIF version

Theorem dfmpt3 6014
Description: Alternate definition for the "maps to" notation df-mpt 4730. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})

Proof of Theorem dfmpt3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4730 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 velsn 4193 . . . . . . 7 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32anbi2i 730 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
43anbi2i 730 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
542exbii 1775 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
6 eliunxp 5259 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})))
7 elopab 4983 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
85, 6, 73bitr4i 292 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
98eqriv 2619 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
101, 9eqtr4i 2647 1 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {csn 4177  cop 4183   ciun 4520  {copab 4712  cmpt 4729   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121
This theorem is referenced by:  dfmpt  6410  taylpfval  24119  indval2  30076
  Copyright terms: Public domain W3C validator