MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt3 Structured version   Visualization version   Unicode version

Theorem dfmpt3 6014
Description: Alternate definition for the "maps to" notation df-mpt 4730. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)

Proof of Theorem dfmpt3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4730 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 velsn 4193 . . . . . . 7  |-  ( y  e.  { B }  <->  y  =  B )
32anbi2i 730 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { B } )  <->  ( x  e.  A  /\  y  =  B ) )
43anbi2i 730 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  =  B ) ) )
542exbii 1775 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  =  B
) ) )
6 eliunxp 5259 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) ) )
7 elopab 4983 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  =  B )
) )
85, 6, 73bitr4i 292 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
98eqriv 2619 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
101, 9eqtr4i 2647 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {csn 4177   <.cop 4183   U_ciun 4520   {copab 4712    |-> cmpt 4729    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121
This theorem is referenced by:  dfmpt  6410  taylpfval  24119  indval2  30076
  Copyright terms: Public domain W3C validator