MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpfval Structured version   Visualization version   GIF version

Theorem taylpfval 24119
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylpfval (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylpfval
StepHypRef Expression
1 taylpfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . 4 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
54orcd 407 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
6 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
71, 2, 3, 4, 6taylplem1 24117 . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8 taylpfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
91, 2, 3, 5, 7, 8taylfval 24113 . . 3 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
10 cnfldbas 19750 . . . . . . 7 ℂ = (Base‘ℂfld)
11 cnfld0 19770 . . . . . . 7 0 = (0g‘ℂfld)
12 cnring 19768 . . . . . . . 8 fld ∈ Ring
13 ringcmn 18581 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1412, 13mp1i 13 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
15 cnfldtps 22581 . . . . . . . 8 fld ∈ TopSp
1615a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
17 ovex 6678 . . . . . . . . 9 (0[,]𝑁) ∈ V
1817inex1 4799 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
1918a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
201, 2, 3, 5, 7taylfvallem1 24111 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
21 eqid 2622 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
2220, 21fmptd 6385 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
23 0z 11388 . . . . . . . . . . 11 0 ∈ ℤ
244nn0zd 11480 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
25 fzval2 12329 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
2623, 24, 25sylancr 695 . . . . . . . . . 10 (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
2726adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
28 fzfid 12772 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
2927, 28eqeltrrd 2702 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin)
30 ovexd 6680 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ V)
31 c0ex 10034 . . . . . . . . 9 0 ∈ V
3231a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 0 ∈ V)
3321, 29, 30, 32fsuppmptdm 8286 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) finSupp 0)
34 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534cnfldhaus 22588 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
3635a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3710, 11, 14, 16, 19, 22, 33, 34, 36haustsmsid 21944 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))})
3829, 20gsumfsum 19813 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3927sumeq1d 14431 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
4038, 39eqtr4d 2659 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
4140sneqd 4189 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4237, 41eqtrd 2656 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4342xpeq2d 5139 . . . 4 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
4443iuneq2dv 4542 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
459, 44eqtrd 2656 . 2 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
46 dfmpt3 6014 . 2 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4745, 46syl6eqr 2674 1 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  {csn 4177  {cpr 4179   ciun 4520  cmpt 4729   × cxp 5112  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   · cmul 9941  +∞cpnf 10071  cmin 10266   / cdiv 10684  0cn0 11292  cz 11377  [,]cicc 12178  ...cfz 12326  cexp 12860  !cfa 13060  Σcsu 14416  TopOpenctopn 16082   Σg cgsu 16101  CMndccmn 18193  Ringcrg 18547  fldccnfld 19746  TopSpctps 20736  Hauscha 21112   tsums ctsu 21929   D𝑛 cdvn 23628   Tayl ctayl 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631  df-dvn 23632  df-tayl 24109
This theorem is referenced by:  taylpf  24120  taylpval  24121  taylply2  24122  dvtaylp  24124
  Copyright terms: Public domain W3C validator