![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnbgr3 | Structured version Visualization version GIF version |
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 26234). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
dfnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
dfnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2622 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 26234 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
5 | edgval 25941 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
6 | dfnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2631 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5352 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 5, 8 | eqtri 2644 | . . . . 5 ⊢ (Edg‘𝐺) = ran 𝐼 |
10 | 9 | rexeqi 3143 | . . . 4 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
11 | funfn 5918 | . . . . . . 7 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
12 | 11 | biimpi 206 | . . . . . 6 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
13 | 12 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
14 | sseq2 3627 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
15 | 14 | rexrn 6361 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
17 | 10, 16 | syl5bb 272 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
18 | 17 | rabbidv 3189 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
19 | 4, 18 | eqtrd 2656 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 {cpr 4179 dom cdm 5114 ran crn 5115 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 NeighbVtx cnbgr 26224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-edg 25940 df-nbgr 26228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |